
Combining a Vector Space Representation of Linguistic Context with a Deep
Neural Network for Text-To-Speech Synthesis

Heng Lu, Simon King, Oliver Watts

The Centre for Speech Technology Research, The University of Edinburgh, UK
hlu2@inf.ed.ac.uk, Simon.King@ed.ac.uk, owatts@staffmail.ed.ac.uk

Abstract
Conventional statistical parametric speech synthesis relies

on decision trees to cluster together similar contexts, result-
ing in tied-parameter context-dependent hidden Markov models
(HMMs). However, decision tree clustering has a major weak-
ness: it use hard division and subdivides the model space based
on one feature at a time, fragmenting the data and failing to
exploit interactions between linguistic context features. These
linguistic features themselves are also problematic, being noisy
and of varied relevance to the acoustics.

We propose to combine our previous work on vector-space
representations of linguistic context, which have the added ad-
vantage of working directly from textual input, and Deep Neural
Networks (DNNs), which can directly accept such continuous
representations as input. The outputs of the network are proba-
bility distributions over speech features. Maximum Likelihood
Parameter Generation is then used to create parameter trajecto-
ries, which in turn drive a vocoder to generate the waveform.

Various configurations of the system are compared, using
both conventional and vector space context representations and
with the DNN making speech parameter predictions at two dif-
ferent temporal resolutions: frames, or states. Both objective
and subjective results are presented.
Index Terms: TTS, speech synthesis, deep neural network,
vector space model, unsupervised learning

1. Introduction
Traditionally, text-to-speech (TTS) conversion systems use a
carefully-constructed linguistic specification as the interface be-
tween the text and the waveform. These representations might
be created in a number of ways, from the hand-coded rules of
a formant synthesizer [1, 2] to the complex multi-layered struc-
tures typically found in systems such as Festival [3]. The latter
are built up in a number of steps, using numerous models (and a
few rules). Each of these models is typically trained in a super-
vised fashion from labelled data (e.g, speech with hand-labelled
phrase breaks). This makes such systems expensive to port to
a new language and hard to adapt to a specific application do-
main.

From the linguistic specification, a waveform is generated.
This might be done through the concatenation of short segments
of speech, as in the unit selection method, or through a trainable
statistical parametric model. The HMM-based statistical para-
metric speech synthesis method [4, ?, 5, 6] is the most widely
used statistical parametric approach, not least because it has ad-
vantages over unit selection such as smaller footprint, stable
output, and more flexibility (e.g., speaker adaptation). How-
ever, the way in which the linguistic specification is mapped by
decision trees onto a set of disjoint context-dependent models

may not make the most effective use of training data.

1.1. Representing and modelling linguistic context

In speech synthesis, context-dependent models are necessary to
capture contextual effects in speech, including co-articulation
and supra-segmental variation. Wide context modelling is much
more important than in automatic speech recognition. Current
approaches effectively naively multiply out all the context fea-
tures (e.g., next phone, preceding phone, position in syllable, ...
etc) to create a vast state space with a cardinality equal to the
product of the cardinalities of all the context features.

1.2. Data fragmentation and averaging

In order learn such a model from data in which only a tiny frac-
tion of possible models actually have training examples, deci-
sion tree-based clustering is employed. Controlling the com-
plexity of the resulting clustered model is non-trivial. The stan-
dard approach not only effectively fragments the data into dis-
joint subsets, for estimating the parameters of each context-
dependent model1, yet at the same time averages not just over
multiple speech samples but over multiple clustered contexts.
This averaging must inevitably lose some of the detail, which
may be necessary for natural-sounding speech. This loss of fine
detail is thought to be a main contributing factor to the ‘muffled’
sound of the generated speech.

1.3. The linguistic specification

Another problem is that, although the statistical parametric
method learns from speech data using a well-defined objec-
tive function, it still relies on the linguistic specification, which
is the basis for the context-dependent modelling. A properly-
designed question set – for example, using categories of place
and manner of articulation – is required when using these con-
text features to cluster the acoustic models. Obtaining the
knowledge and data required to construct the linguistic speci-
fication, and to properly use it for model clustering, is difficult
for under-resourced languages.

1.4. An alternative approach to the linguistic specification:
a Vector Space-based Front End

From the field of NLP, we have drawn inspiration from work
in which letter and word representations are constructed in a
way that is optimal for a certain specific task. [7] describes a
self-organizing codebook that is jointly optimized with the text-

1Of course, Expectation-Maximisation training actually uses ‘soft
counting’ and not strictly hard assignment of speech frames to single
model parameters, but nevertheless each speech frame contributes to
the estimate of only a very few model parameters.

8th ISCA Speech Synthesis Workshop • August 31 – September 2, 2013 • Barcelona, Spain

261



to-speech model ensuring that the coding is optimal in terms
of overall performance. Experiments showed that performance
is improved compared to baseline system using orthogonal let-
ter codes. [8, 9] take the idea of task-based estimation of word
embeddings from neural net language modelling and apply it to
an array of NLP tasks in a multitask learning framework. From
these ideas, we have developed in previous work a Vector Space
Model-based approach to constructing the linguistic specifica-
tion.

[15] describes in detail our approach to the unsupervised
construction of representations for context modelling in TTS
– here we just give a brief summary of how this approach
works. The vector space model (VSM) is well established in
Information Retrieval (IR) and Natural Language Processing
(NLP) as a way of representing objects such as documents and
words as vectors of descriptors. To build vector space mod-
els, co-occurrence statistics are gathered in matrix form to pro-
duce high-dimensional representations of the distributional be-
haviour of word and letter types in the corpus. Lower dimen-
sional representations are obtained by approximately factoriz-
ing the matrix of raw co-occurrence counts by the application
of slim singular value decomposition (SVD). The main advan-
tage of the VSM model over the traditional decision tree is that,
instead of querying conventional features of linguistic objects,
such as the phonetic class to which a phoneme belongs or the
part of speech to which a word belongs, the objective distance
between the VSM output values directly represents the simi-
larity of two units. The VSMs are learned in an unsupervised
fashion from text: no labeled speech is required.

In that previous work, we employed this novel front end in
conjunction with conventional decision tree-based model clus-
tering of HMMs-of-context-dependent-units [15]. However, the
recursive hard partitioning of the vector space by the decision
tree is not entirely satisfying, since it may lose some of the
representational power of the VSM and in particular is unable
to take best advantage of any factorial structure in the space.
Therefore, we now consider a different way to map from the
continuously-valued linguistic specification constructed by the
VSM, to the parameters of Gaussians from which we can ulti-
mately generate synthetic speech.

1.5. Deep Neural Networks

Compared with the decision tree clustering method, neural net-
works may be able to better model the interactions between
linguistic and acoustic features, including correlations and fac-
torial behaviour. Neural networks were used in [13] to map
between a sequence of phonemes and an acoustic description
from which a speech waveform can be generated. More re-
cently, in [14] a DNN is employed to establish a mapping be-
tween phoneme-level labels represented as a large set of binary
input features (derived from the question set that would oth-
erwise have been used in decision tree clustering), numerical
input features (for position and phone/syllable number) and tar-
get acoustic features. The DNN predicts output on a frame-by-
frame basis.

There are several design choices to be made in creating a
DNN-based synthesiser, which are not explored in [14]. So, in
this paper we offer some comparisons of different input repre-
sentations and different timescales for predicting the acoustic
features.

We compare the DNN approach to TTS with three kinds of
input representation: letter-based binary input, phoneme-based
binary input, and a letter-based VSM. The binary input is sim-

Deep Neural 
Network

DNN output 
Acoustic features 
as Mean & Variance 

parameters for 
Gaussian 

Distribution

Maximum likelihood 
parameter generation 

algorithm

1

1y

Front-End

Text input

1

1xDNN input data
1

Kx 1

Mx K

Mx…… …

One sample

1

1h
2

1h …

…

…

1

Ph

1

2h
2

2h Q

2h

1

3h 2

3h 3

Vh

2

1y
1

My 2

My

…

…

…

1c 2c cM
Static 

acoustic 
feature

Figure 1: Framework for Deep Neural Networks based TTS

ilar to that in [14], with one binary feature for every possible
two-way partition of the linguistic feature space. The original
motivation behind the VSM front-end, as alluded to earlier, is
an attempt to construct a linguistic specification from text using
only unsupervised learning, motivated by a need to build TTS
systems for under-resourced languages. The resulting represen-
tation comprises a continuous vector space which reflects the
distributional properties of the training material.

2. System architecture
2.1. Framework

Figure 1 illustrates the framework of the DNN-TTS method.
In the training stage, text is first transformed into DNN input
labels xji . Where i = 1, 2, ...,M denotes the ith DNN input
label vector, and j = 1, 2, ...,K denotes the jth element in the
ith DNN input label vector. In this work, both frame-based and
state-based systems were trained. In the case of the frame-based
DNN, M is set to the total number of frames in the utterance,
and the DNN is trained to map from binary labels to acoustic
features ylk, where k indexes the DNN output vector and l in-
dexes the elements of the output vector. In addition to static
spectral envelope features, the acoustic feature vectors also in-
clude dynamic features derived from them.

In the case of the state-based DNN, the DNN is trained to
map from context-dependent labels to the HMM model param-
eters for each context-dependent HMM state. The full-context
space in speech synthesis is the product of cardinalities of each
context feature, and is thus of enormous size.

H. Lu, S. King, O. Watts

262



To summarise, three various representations for the input
xji are compared:

1. Phone-based binary features, in which the linguistic con-
text features are converted to a binary representation ac-
cording to the answers to the conventional set of ques-
tions used to build parameter-tying decision trees

2. Letter-based binary features, constructed in an analogous
way

3. VSM-based continuous features, as described in section
1.4.

At the synthesis stage, distributions over acoustic features
ylk are predicted by the DNN from the input features xji for each
frame, or for each HMM state. Finally, static acoustic features
C = {c1, c2, ..., cM} are generated from those distributions
using MLPG, and a vocoder is employed to synthesise a wave-
form from the generated acoustic features. In our experiments,
only the means of Gaussian distributions are predicted, and we
use pre-computed fixed variances.

2.2. Deep Neural Network Training

In contrast to the data fragmentation inherent in decision tree
clustering, a DNN is trained as a single model using all data,
via back-propagation, meaning that every training sample effec-
tively contributes to the training of every model parameter (the
weights in the DNN). In addition to varying the input represen-
tation and temporal granularity, our experiments also varied the
number of hidden layers from 1 to 3 layers; we use the weights
trained in shallower DNN to initialize the weights for Deeper
DNN in the training process. The up to 3 hidden layers have
1000, 500, and 250 units, respectively. And linear layer is used
as the output layer.

2.3. Maximum likelihood parameter generation

After generating the acoustic features ylk (including both static
and dynamic features) from the DNN, we use the maximum
likelihood parameter generation (MLPG) method [4] to gener-
ate smooth parameter trajectories to drive a vocoder.

3. Experiments
Six systems were built for comparison, as defined in Table 1.
Systems C and E are HMM-based benchmark systems that use
decision trees to map from the linguistic specification to model
parameters; the remainder are DNN systems. Because there are
typically more letters than phonemes in a given word or phrase,
for the letter-based systems 3 state HMMs are used, whereas for
phones 5 state HMMs are used.

3.1. Database

A database of a British English male speaker sampled at 16kHz
was used for the experiments. There were 1000 utterances in the
database, from which 860 were used for training, and 140 were
held out for subjective and objective evaluation. 21-order Line
Spectral Pair (LSP) plus delta and delta-delta were extracted to
represent the spectrum. Log F0 plus delta and delta-delta were
used to model pitch. 10-order features were extracted to model
aperiodicity (AP). 3 binary values are used to represent voicing
and its delta and delta delta.

0 10 20 30 40 50 60 70 80 90 100

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

epochs

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 
3 hidden Layer train error
3 hidden Layer test error
2 hidden Layer train error
2 hidden Layer test error
1 hidden Layer train error
1 hidden Layer test error

Figure 2: Mean square error for system A (letter-based binary
DNN-TTS)

0 10 20 30 40 50 60 70 80 90 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

epochs

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 
2 hidden Layer train error
2 hidden Layer test error
1 hidden Layer train error
1 hidden Layer test error

Figure 3: Mean square error for system B (letter-based VSM
DNN-TTS)

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

epochs

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 
3 hidden Layer train error
3 hidden Layer test error

Figure 4: Mean square error for system F (phone-based context-
dependent state mapping DNN-TTS)

8th ISCA Speech Synthesis Workshop • August 31 – September 2, 2013 • Barcelona, Spain

263



System Type Linguistic
unit

Input Timescale

A DNN letter binary state
B DNN letter continuous state
C Decision tree letter labels state
D DNN phone binary frame
E Decision tree phone labels state
F DNN phone binary state

Table 1: Summary of systems built

3.2. Binary Front end

For the phone-based binary representation, each context-
dependent phonetic label is rewritten as a 1256-dimensional bi-
nary vector. Features incorporated into this vector include the
identities and phonetic categories of the {previous, current, fol-
lowing} phones, as well as word and phrase level positional
features. Utterance-level features were excluded in these exper-
iments in order to reduce the input vector dimensionality. In the
case of the frame-based DNN, frame position within the current
phone (both forwards and backwards) and total length in frames
of the current phone are appended as numerical features to the
DNN input vector. In the case of the state-based DNN, 5 binary
values are appended to the input vector to encode state index.
For the binary letter-based representation, letter-related context
features are encoded in a 1134-dimensional binary vector for
input to the DNN. For the VSM method, each letter in the in-
put text is represented as a 27-dimensional vector of continuous
values.

3.3. Objective evaluation

Figures 2 to 4 show the the training and testing error for systems
A, B and F respectively. In 2, in can be seen that as the number
of DNN hidden layers in increased, error decreases. The plots
for the DNNs with 3 hidden layers exhibit some evidence of
over-training. In 3, the 2 hidden layer error is not obviously
smaller than the 1 hidden layer neural network. This is probably
because the input dimension for VSM is only 27, so the DNN
does not need so many parameters for the mapping. The training
and test error for the 3 hidden layer result is shown in figure 4
for system F, where training and test error is smaller than the
equivalent letter-based system A in figure 2. Figure 5 shows
MLPG-generated LSP trajectories from system F, compared to
natural LSPs. The predicted LSPs lack detail, compared with
the natural ones.

Root Mean Square Error (RMSE) between generated LSPs
and natural LSPs for a total of 140 utterances were calculated
for each system. The results are shown in Table 3. From this
result we can see that the two HMM + decision tree baseline
systems C and E (letter and phone based respectively) still per-
form better than the DNN-TTS systems. System F is the best
amongst the DNN-based systems, and informal listening con-
firmed that the voice generated by this system sounds reason-
able.

3.4. Subjective evaluation

Six pairwise AB naturalness tests were conducted. 40 utter-
ances were synthesized for each AB test, and 19 native speak-
ers of English were asked to choose the more natural one from
each pair. Results are shown in Table 2. All preferences in this
Table are significant. The subjective listening test results are in

System A B C D E F
A > <
B < <
C > <
D <
E > >
f > > <

Table 2: Subjective listening test results. Blank cells indicate
comparisons that were not tested. > indicates that the system
named in the row was judged to be better than the system named
in the column, and < indicates the reverse.

System LSP Error
A 0.222398
B 0.228053
C 0.157672
D 0.244260
E 0.135460
F 0.176447

Table 3: Root Mean Square Error for LSP

general agreement with the objective measure.

4. Conclusions
We have presented an attempt to use DNNs to replace decision
tree parameter clustering, motivated by a desire to take bet-
ter advantage of the continuously-valued features produced by
our novel VSM-based front-end. From the results obtained, the
HMM benchmark systems still outperform the DNNs. It is not
surprising that phone-based systems are better than letter-based
ones – the point of the letter-based system is not to be better,
but rather to be easier to construct for many different languages.
The VSM front end does not do as well as hoped, but the com-
parison with the other systems is not quite fair because the VSM
system uses no suprasegmental contextual information. Future
work includes refining the input representation further, combin-
ing the binary and VSM features into a single system, training
the DNN on substantially more data.

5. Acknowledgements
This research was supported by an EPSRC programme grant
grant EP/I031022/1 (Natural Speech Technology) and has
received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment no. 287678 (Simple4All).

H. Lu, S. King, O. Watts

264



0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

Frame

H
z

Figure 5: MLPG generated LSP by system F (phones, state units, DNN) in red compared with natural LSPs in blue.

6. References
[1] D. Klatt, “Review of text-to-speech conversion for en-

glish,” J. Acoust. Soc. Amer., vol. 82, pp. 737–793, 1987.

[2] J. Allen, S. Hunnicutt, and D. Klatt, “From text to speech:
The mitalk system,” Cambridge Univ. Press, 1987.

[3] R. A. J. Clark, K. Richmond, and S. King, “Multisyn:
Open-domain unit selection for the Festival speech syn-
thesis system,” Speech Communication, vol. 49, no. 4, pp.
317–330, 2007.

[4] K. Tokuda, T. Yoshimura, T., Masuko, T. Kobayashi, and
T. Kitamura, “Speech parameter generation algorithms
for hmm-based speech synthesis,” Proc. of ICASSP, pp.
1315–1318, 2000.

[5] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and
T. Kitamura, “Simultaneous modeling of spectrum, pitch
and duration in hmm-based speech synthesis,” Proc. of
Eurospeech, pp. 2347–2350, 1999.

[6] “HTS,” http://hts.sp.nitech.ac.jp/.

[7] Kåre Jean Jensen and Søren Riis, “Self-organizing letter
code-book for text-to-phoneme neural network model,” in
INTERSPEECH, 2000, pp. 318–321.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa, “Nat-
ural language processing (almost) from scratch,” CoRR,
vol. abs/1103.0398, 2011.

[9] R. Collobert and J. Weston, “A unified architecture for
natural language processing: Deep neural networks with
multitask learning,” in International Conference on Ma-
chine Learning, ICML, 2008.

[10] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol.
18, pp. 1527–1554, 2006.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science, vol.
313, pp. 504–507, 2006.

[12] G. Dahl, E. George, Y. Dong, D. Li, and A. Acero,
“Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition,” IEEE Transactions

on Audio, Speech, and Language Processing, vol. 20, pp.
30–42, 2012.

[13] O. Karaali, G. Corrigan, and I. Gerson, “Speech synthesis
with neural networks,” Proceedings of the 1996 World
Congress on Neural Networks, 1996.

[14] H. Zen, A. Senior, and M. Schuster, “Statistical parametric
speech synthesis using deep neural networks,” Proc. of
ICASSP, 2013.

[15] O. S. Watts, “Unsupervised learning for text-to-speech
synthesis,” Ph.D. dissertation, University of Edinburgh,
2012.

8th ISCA Speech Synthesis Workshop • August 31 – September 2, 2013 • Barcelona, Spain

265


