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ABSTRACT

This paper presents a fixed- and low-dimensional, perceptu-
ally based dynamic sinusoidal model of speech referred to as
PDM (Perceptual Dynamic Model). To decrease and fix the
number of sinusoidal components typically used in the stan-
dard sinusoidal model, we propose to use only one dynamic
sinusoidal component per critical band. For each band, the si-
nusoid with the maximum spectral amplitude is selected and
associated with the centre frequency of that critical band. The
model is expanded at low frequencies by incorporating sinu-
soids at the boundaries of the corresponding bands while at
the higher frequencies a modulated noise component is used.
A listening test is conducted to compare speech reconstructed
with PDM and state-of-the-art models of speech, where all
models are constrained to use an equal number of parameters.
The results show that PDM is clearly preferred in terms of
quality over the other systems.

Index Terms— Sinusoidal Model, Critical band, Vocoder

1. INTRODUCTION

Vocoders have been usefully applied in a number of appli-
cations, such as low-bit rate speech coding, analysis, speech
synthesis and for speech modification. Vocoders extract pa-
rameters from speech and then use them (or some modified
form) to reconstruct speech. Current parametric synthesis
methods are mainly based on the source-filter theory, where
the source excitation is represented by a mixture of pulse train
and white noise. More sophisticated models have been pro-
posed to improve quality, such as STRAIGHT [1], which de-
composes signals into spectral envelope, excitation and aperi-
odicity parameters. To reduce the number of parameters when
using STRAIGHT, researchers [2] have suggested the use of
an intermediate parameterisation, such as the Mel cepstrum
[3] with critical band excitation (STRMCEP) to represent a
given speech frame. An alternative category of vocoders rep-
resents speech as a sum of sinusoids [4]. This approach allows

us to modify many speech characteristics, such as timbre and
duration. Multiple sinusoidal models have been proposed, for
example, the Harmonic pulse Noise Model (HNM) and time-
varying models, such as the Quasi-Harmonic Model (QHM)
[5] and the adaptive Quasi-Harmonic Model (aQHM) [6].

In [7], a set of source-filter vocoders is experimentally
compared with various sinusoidal vocoders (e.g. adaptive
Harmonic Model (aHM) [8] and Harmonic Model (HM)).
Both objective error measures and preference listening tests
show that aHM and HM are preferred to the source-filter
vocoders in terms of quality. However, the number of param-
eters used in these sinusoidal vocoders is much higher than in
the source-filter models, and moreover the varying number of
parameters in each frame also constrains their further appli-
cation [9]. Crucially, for example, both these factors make it
difficult to use sinusoidal vocoders for statistical speech syn-
thesis. To address the need for an analysis/synthesis method
which can provide high quality with a fixed and low number
of parameters, we propose a new perceptually based dynamic
sinusoidal model (PDM). At this initial stage, we focus on
evaluating the proposed model in a copy synthesis experi-
ment. Listening test results show that in the same number of
parameters, the suggested model is preferred to the standard
sinusoidal model and STRMCEP.

This paper is organised as follows. Section 2 introduces
the baseline sinusoidal model. In Section 3, we discuss how
we address the issues mentioned above step by step, in or-
der to develop a vocoder with the desired characteristics. In
Section 4, results of experiments are presented to support our
proposal for using both critical bands and dynamic features.
Comparisons with state-of-the-art systems are also provided.
Finally, we conclude our paper in Section 5.

2. SINUSOIDAL MODEL

Many acoustic signals, and the human voice and music in
particular, can be efficiently modelled as a sum of sinusoids.
Furthermore, research in the field of psychoacoustics shows



it is reasonable to decompose sounds into sums of sinusoids
[10]. The first, “standard” sinusoidal model (SM) [4] used
non-harmonically related sinusoids with amplitude, phase and
frequency parameters to represent speech. The number of si-
nusoids per frame could either be fixed or related to the value
of pitch: K(n) = Fs/2

F0(n)
(Fs: sampling frequency, F0: time-

varying pitch for harmonic models). Parameters θk, Ak and
ωk represent the phase, amplitude and frequency of the kth
sinusoid respectively. As Akejθk is invariant, it is possible to
model speech as:

s(n) =

K(n)∑
k=−K(n)

Ake
jθkejωkn =

K(n)∑
k=−K(n)

ake
jωkn (1)

Complex amplitudes ak (a−k = āk) can be estimated by
peak picking or solving a least squares problem [11]. Fol-
lowing the latter approach, these parameters are computed for
windowed frames by minimizing the error between the speech
model s(n) and the original speech h(n) as shown in (2), where
w(n) is the analysis window for each frame and N is half of
window length.

ε =

N∑
n=−N

w2(n)(s(n) − h(n))2 (2)

3. PERCEPTUALLY BASED DYNAMIC SINUSOIDAL
MODEL (PDM)

Taking the basic model in Section 2, the approach we took
to develop the PDM was first to decrease and fix the number
of sinusoids in each frame according to knowledge of human
perception. Specifically, for a wideband speech signal (0Hz
˜ 8kHz), we assume 21 critical bands [12], and for each of
these critical bands only one sinusoid is used. However, we
found limiting the number of parameters in this way had some
negative effects on speech quality which subsequently needed
to be resolved. First, there is a general degradation in sig-
nal quality due to the parsimonious representation. Second,
we found the resynthesised speech to have an attenuated, or
“muffled”, quality. Third, we observed a perceptual distor-
tion which is best described as a “tube effect” (resynthesised
speech sounds as though it has been spoken through a tube).
In the rest of this section, we discuss the steps and issues in-
volved in the development of the PDM in more depth.

3.1. Decreasing and fixing the number of parameters

From (1), we can see that the dimensionality of the sinusoidal
components in each frame is high (i.e., with F0=100, Fs=16k,
80 complex amplitudes would result), and it varies depending
on F0. In human perception, the range of sound sensitivity is
broad: the auditory system is more sensitive to lower frequen-
cies than to the higher frequencies. Furthermore, a range of
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Fig. 1. Speech magnitude spectrum (blue) along with the crit-
ical band boundaries (dashed lines). Estimated amplitudes
at the centre of the critical bands (red stars) and harmonic
amplitudes (black circles).

frequencies may be perceived as the same, as they activate the
same area on the basilar membrane [13]. In principle, there-
fore, we can ignore many redundant sinusoids and still retain
the perceptually salient characteristics of a speech signal.

In order to distinguish the smallest frequency difference
that a listener could perceive, we adopted a perceptual sinu-
soidal model (PM) based on critical bands [14] in order to
decrease and fix the number of parameters. The whole fre-
quency band is divided into 21 critical bands [12]. Instead of
using all harmonic components, only 21 sinusoids at the fre-
quencies of critical band centres are used to represent speech,
as illustrated in Fig. 1. The PM function is defined as (3). ωck
and ack represent the frequency of the critical centre and cor-
responding estimated complex amplitude. In order to demon-
strate the effectiveness of critical bands, as part of the evalua-
tion presented in Section 4, we have compared it with equiv-
alent systems using linear and Mel frequency scales (LM and
MM respectively). An informal pilot listening test conducted
during the development of PDM indicated that using only one
sinusoidal component in each critical band was preferred to
using linear and Mel frequency scales.

scen(n) =

21∑
k=−21

acke
jωc

kn (3)

3.2. Integrating dynamic features for sinusoids

However, the test also indicated that the quality of the recon-
structed speech was not satisfactory. To address this problem,
we have introduced dynamic features for each sinusoid, sim-
ilar to the method of [5]. The new model is referred to as the
perceptual dynamic sinusoidal model (PDM):

scen(n) =

21∑
k=−21

(ack + nbck)ejω
c
kn (4)

where ack and bck represent the static amplitude and dynamic
slope respectively while ωck is the centre frequency of each
critical band. The parameters are computed in a similar



way as (2). Hence, PDM has twice as many parameters
compared with PM. Although the slope parameter performs
a different role to a static amplitude, we want to further
compare the quality of samples generated from PDM with
the ones from PM with an equal number of parameters.
So, by dividing every original critical band into half, an-
other version of PM with doubled critical band frequencies
(scen(n) =

∑42
k=−42ã

c
ke
jω̃c

kn) is implemented. Comparisons
between PM and PDM will be presented in Section 4.
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Fig. 2. Speech magnitude spectrum (blue) along with the crit-
ical bands boundaries (dashed lines). Estimated amplitudes
at the centre of the critical bands (red stars), and maximum
amplitudes in each band (black circles). Green stars denote
the sinusoids with the maximum amplitude per critical band
as moved at the central frequency of each critical band.

3.3. Maximum band energy

In Sections 3.1 and 3.2, we have proposed a fixed- and
low-dimensional perceptional sinusoidal model to represent
speech, based on 21 critical bands with dynamic features.
However, such a parameterisation sounds muffled. In Fig. 2,
the sinusoid corresponding to the centre of the critical bands
are shown with red crosses, while the sinusoid with the max-
imum amplitude in each band is shown with a black circle.
From this example, it is easily seen that the critical band cen-
tre sinusoids frequently have a lower amplitude, which may
lead to loss of the energy of the signal.

Here, instead of using the critical centre component, for
each band, we propose to compute the sinusoidal component
which has the maximum spectral amplitude (black circles),
and then substitute the initial frequency of the sinusoid with
the centre frequency of the critical band (green stars). Peak
picking is used to identify which sinusoid has the highest am-
plitude in each band. Doing this, most of the energy of the
signal is modeled. The new suggested system is defined in
(5), where amaxk and bmaxk represent the static amplitude and
dynamic slope for the sinusoid with the maximum spectral
amplitude in each critical band, andwck is the centre frequency
of critical band.

smax(n) =

21∑
k=−21

(amaxk + nbmaxk )ejω
c
kn (5)

3.4. Perceived distortion (“tube effect”)

The muffled sound is much improved in the form of PDM de-
scribed in Section 3.3. However, in Fig. 2, we can see there
are only 4 sinusoidal components above 4kHz. Due to this
decreased number of sinusoidal components for the higher
frequency range, we have found that the generated samples
sound as they have been spoken from a tube (the “tube ef-
fect”) with some frequencies being removed completely. This
is especially critical for fricative sounds. As the critical bands
become very sparse in the higher frequency range, more si-
nusoidal components are required to compensate the loss of
quality in these bands.

Based on the fact that human auditory system is not very
selective at high frequencies as in the low frequencies, a time
and frequency domain modulated noise sH(n), covering the
high frequencies, is added to the model. For this purpose,
a random sinusoidal signal is obtained with amplitudes ob-
tained at every 100 Hz through interpolation of the amplitudes
estimated at the high frequency bands (i.e., ak(max), k =
18, ..., 21), and with random phase. No dynamic features are
used for this random signal. This signal is further modulated
over time by the time-domain envelope (estimated through
the Hilbert Transform) from the sinusoidal signal made by
the highest 4 sinusoidal components in (5).

At low frequencies, a strong sinusoidal component at the
center of a critical band will mask all the other sinusoidal
components in that band. The masking threshold is highest at
each critical band center and lowest at the boundaries. There-
fore, the masking effect will not be as strong at the boundaries
of the critical bands [14]. This implies the sinusoids at the the
critical band boundaries can potentially affect perception. Ac-
cordingly, we chose to add another 9 sinusoidal components
at the lower critical band boundaries.

sL(n) =

9∑
k=−9

(abok + nbbok )ejω
bo
k n;wk ≤ 4kHz (6)

where abok , bbok and ωbok represent static amplitudes, dynamic
slopes and frequencies for 9 sinusoids at the critical bound-
aries. Finally, the suggested PDM is composed by the sum of
the above 3 components:

s(n) = smax(n) + sL(n) + sH(n) (7)

4. EVALUATION

Phonetically balanced speech data from 3 male and 4 female
English speakers was selected for testing. Five neutral speak-
ing sentences were selected for each speaker, with 16kHz
sampling rate. We used a reference implementation of each of
the models to create stimuli using copy synthesis. The frame
shift was set to 5ms with a window length of 20ms for all the
methods. Several generated samples are available online at



Table 1. Parameters and dimensions used in the 3 systems

Name Model Dimensionality: Parameters
PDM Perceptual dynamic sinusoidal model 120: (30 static + 30 slope)*(real + imaginary)

STRMCEP STRAIGHT Mel cepstral with band excitation 123: 100 Mel cepstrum + 22 aperiodicity + F0
SM Sinusoidal model with 40 maximum sinusoids 120: 40 frequency + 40 amplitude + 40 phase

Table 2. Objective quality for LM, MM and PM

System Frequency PESQ
LM Linear band 2.5961
MM Mel band 2.8595
PM Critical band 3.2183

http://homepages.inf.ed.ac.uk/s1164800/PDM.html
The first experiment aims to compare the use of criti-

cal bands (PM) with Mel frequency (MM) and linear fre-
quency scales (LM). Perceptual Evaluation of Speech Quality
(PESQ) [15] is calculated as an objective error measure. The
average values of all 35 sentences of the seven speakers are
listed in Table 2. The increased PESQ value of PM shows that
the sinusoidal model based on critical bands produces higher
quality than those based on Mel and linear frequency scales.
This was also confirmed with informal listening tests.
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Fig. 3. Preference result with 95% confidence interval (Top:
online test; Bottom: lab-based test)

Next, we are interested in how the suggested PDM per-
forms compared to other state-of-the-art models, and specifi-
cally when the same number of parameters are used with each
model. As STRMCEP and the standard sinusoidal model are
the two popular models which give high quality of recon-
structed speech, a preference listening test was conducted to
compare these three models. Details concerning the parame-
ters used in each model is given in Table 1.

Two groups of subjects were tested separately: 24 listen-
ers participated in a pilot web-based experiment (“online”),
and then 30 native English speakers took the test in sound-

treated perceptual testing booths (“lab-based”). In the listen-
ing test, we also compared PDM and PM with the same num-
ber of parameters in order to investigate the effectiveness of
the dynamic features. From Fig. 3, we see that the online
and lab-based results are consistent with each other. Little or
no preference is shown between PDM and PM, though PDM
uses only half the number of critical bands compared to PM.
It also shows that with an equal number of parameters, PDM
is clearly preferred compared with the other two state-of-the-
art systems. Regarding PDM and PM, we notice that in a
well-controlled environment (i.e. sound booths, headphones),
PDM is preferred over PM. Moreover, the slope features esti-
mated from the signal offer a natural way to model the dy-
namic aspects of speech. Therefore, we ultimately favour
PDM over PM.

5. CONCLUSION

This paper has presented a perceptual dynamic sinusoidal
model based on critical bands (PDM) for representing speech.
Initially, only one sinusoidal component is used in each criti-
cal band, and objective results show that this parametrization
is more effective than using Mel and linear frequency scales.
For each band, the sinusoid with the maximum spectrum
amplitude is selected and its frequency is associated with the
centre frequency of the critical band. Dynamic features (com-
plex slopes) are further integrated, and are found to improve
quality in the same way as doubling the number of critical
bands in PM. Frequency and time-domain envelope modula-
tion of a noise component at higher frequencies and adding
sinusoidal components at the critical boundaries for lower
frequencies are also considered in an effort to remove what
we refer to as a “tube effect”. Compared with STRMCEP
and standard SM, our listening test shows PDM is preferred
in terms of the quality of the reconstructed signal over the
other models when using the same number of parameters. In
the future, we plan to reduce the number of parameters of
the model further and to apply it in the context of parametric
speech synthesis.
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