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ABSTRACT
In this paper, we present a talking head in which the lips and
head motion are controlled using articulatory movements es-
timated from speech. A phone-size HMM-based inversion
mapping is employed and trained in a semi-supervised fash-
ion. The advantage of the use of articulatory features is that
they can drive the lips motions and they have a close link
with head movements. Speech inversion normally requires
the training data recorded with electromagnetic articulograph
(EMA), which restricts the naturalness of head movements.
The present study considers a more realistic recording condi-
tion where the training data for the target speaker are recorded
with a usual motion capture system rather than EMA. Differ-
ent temporal clustering techniques are investigated for HMM-
based mapping as well as a GMM-based frame-wise mapping
as a baseline system. Objective and subjective experiments
show that the synthesised motions are more natural using an
HMM system than a GMM one, and estimated EMA features
outperform prosodic features.

Index Terms— inversion mapping, clustering, head mo-
tion synthesis

1. INTRODUCTION

In an embodied virtual agent or animated character speech
is supplemented with visual information. Some examples of
possible extra information is the motion of the mouth, lips,
and other articulators, eyebrows, eyelids and other facial fea-
tures, and the movement of the head and body. Such sup-
plementary information has been shown to increase intelli-
gibility [1]. For example, nodding can be used not only for
agreement, but also for emphasis, indicating attention and to
indicate thinking during disfluencies [2, 3].

The context of the speech has been shown to be an im-
portant factor. It was shown that free speech had more ex-
pressive head motion than read speech [4]. In dialogues the
interlocutor also has an impact on head motion and there is a
bias towards nodding [5].
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The head also moves according to the speech production
[6]. Such motions, which the present study is interested in,
are indispensable for making animated agents appear natural.
Prior work in the analysis of the relationship between head
motion and speech has mostly found on prosodic features (F0,
energy, etc.). While it has been shown that there is a link
between head motion and prosody [7], there is no clear linear
mapping between acoustic features like F0 and head motion
[8]. Our recent research has shown that articulatory features
(movements of the lips, jaw and tongue) are more correlated
with head motion than prosodic and cepstral features, even
when they are estimated from the speech [9].

In addition to the speech features, motion unit and type of
model are the important factors to achieve realistic and natural
speech-driven head motion synthesis.

With regards to the motion units, there is a range from
frame based approaches where each frame is estimated indi-
vidually [8, 10], to using longer temporal information [11,
12]. When using longer segments as the basis of motion
one could either work with meaningful units such as [13] or
semi-or-unsupervised learning for example [14]. Regarding
the modelling, a range of techniques have been used. Fo-
cusing on machine learning approaches, Gaussian mixture
model (GMM) [10, 14] and hidden Markov model (HMM)
[9, 11, 12, 13, 15], have been attempted.

In our previous work [9], electromagnetic articulograph
(EMA) was employed to record articulatory motions and
head motions, and an HMM-based clustering method was
used to find motion units. The problem with an EMA is that
head motions were constrained because of the nature of the
recording method and thus they were not as natural as those
when recorded without EMA. To mitigate the problem, the
present study employs a motion capture system based on
optical markers to record head motions. The present study in-
vestigates also different clustering techniques to find suitable
head motion units for speech-driven head motion synthe-
sis that uses estimated articulatory features. To be specific,
HMM-based temporal clustering and Aligned Cluster Anal-
ysis (ACA) are considered for HMM-based mapping as well
as GMM-based frame-wise mapping as a baseline system. In
addition to objective evaluations, a subjective experiment is
carried out to evaluation the naturalness of the synthesised
animations.



Fig. 1. Overview of the speech driven talking head animation.

2. SPEECH DRIVEN TALKING HEAD

Our overall approach is shown in Figure 1. There are three
key parts, the articulatory features prediction, the head motion
synthesis, and the talking head animation which is driven by
the predicted articulatory features.

2.1. Articulatory features prediction
The articulatory features are estimated versions of the move-
ments estimated by an Electro-magnetic Articulograph (EMA).

Previously we have shown that an HMM-based acoustic-
to-articulatory system have created reasonable head motion
[9]. For this paper we use the same phone-sized HMMs. The
models were initialised on labelled data from different speak-
ers then adapted to the target speakers’ voices using unsuper-
vised methods. We then iteratively create phonetic transcrip-
tions and then used the new transcription to retrain the models
until convergence of the difference in accuracy of the phonetic
transcriptions [16].

The predicted articulatory features are (x, y)-coordinates
of 6 active EMA coils (i.e. 2 coils attached to the upper and
lower lip, 1 to the jaw and 3 to the tongue). We will thus refer
to them as EMA features.

2.2. Head motion synthesis
For the many-to-many mapping of synthesising head motion
from speech, we estimate the head motion from the interme-
diate articulation predicted from speech.

2.2.1. HMM-based head motion synthesis
In training stage, streams of head motion and speech feature
vectors are fed to train multi-stream HMMs, whose model
units are determined by the clustering technique described in
Section 2.2.2. For each stream, the emission probability den-
sity function of each state is modelled by a multivariate Gaus-
sian distribution with a diagonal covariance matrix.

In mapping stage, i.e. head motion synthesis stage, the
sequence of head motion feature vectors (i.e. rotations of the
head) Ẑ is estimated from the intermediate articulatory fea-
tures vectors Ŷ predicted from speech feature vectors X .

Ẑ = argmax
Z,Y
{p (Z|λz,y, Qz,y)P

(
λz,y, Qz,y|Ŷ

)
p
(
Ŷ |λy,x, Qy,x

)
P (λy,x, Qy,x|X)}

(1)

where λy,x is the parameters set of the acoustic-articulatory
HMM, Qy,x is the articulatory HMM state sequence decoded
form speech X , λz,y is the parameters set of the articulatory-
head motion HMM and Qz,y is the head motion HMM state
sequence decoded from the predicted articulatory features Ŷ .
Articulatory features Ŷ is obtained by maximizing separately
the two conditional probability terms of: state sequence de-

coding
{(

λ̂y,x, Q̂y,x
)
= argmax

λ,Q
{P (λy,x, Qy,x|X)}

}
and

articulatory prediction
{
Ŷ = argmax

Y
{p(Y |λ̂y,x, Q̂y,x)}

}
.

Then, head motion Ẑ is obtained by maximizing all condi-
tional probabilities. After predicting the articulatory features
Ŷ , we decode the head motion HMM state sequence by max-

imising
{(

λ̂z,y, Q̂z,y
)
= arg max

λz,y,Qz,y

{
P
(
λz,y, Qz,y|Ŷ

)}}
using the Viterbi algorithm. Then, we synthesise the head
motion by estimating

{
Ẑ = argmax

Z

{
p(Z|λ̂z,y, Q̂z,y)

}}
,

using the MLPG algorithm [17].

2.2.2. Temporal clustering of head motion
Manual annotation is often time-consuming and expensive.
In our previous work [9], we used HMM-based clustering to
annotate head motion data. Unfortunately, it is difficult to
evaluate the clustering because there is no manual annotation.
To resolve partially this problem, we compare different clus-
tering techniques and analyse their impact on head motion
synthesis. In this paper, we introduce another clustering pro-
cedure based on the Aligned Cluster Analysis (ACA), initially
proposed for human motion segmentation by Zhou et al. [18].
ACA combines kernel k-means with a dynamic time align-
ment kernel to cluster time series.

To segment a sequence X ∈ RD,T of data with D-
dimension and T frames into M segments, segmentation
matrix S and cluster matrix G are used to assign each seg-
ment to one cluster. The segmentation matrix S contain the
start and the end frames of each segment and the cluster ma-
trix G indicate if a segment belongs the cluster c. If gct = 1
than XSt

belongs to class c otherwise gct = 0 where St de-
note the segment begin at frame t and end at frame t+ n− 1.
Note that n represent the length of the segment and variate
form nmin to nmax. The segmentation (G,S) were found
using the equations detailed in [18].

2.2.3. GMM-based head motion synthesis
GMM-based approach was also applied to estimate head mo-
tion from speech, in order to compare our approach to prior



work such as [10, 11, 12] and use it as a baseline system to
evaluate the effectiveness of our approach. We used frame-
wise GMM-mapping that estimates head motion using Max-
imum Likelihood Estimation (MLE) from the input speech
feature. This method was originally used for articulatory-to-
acoustic mapping and inversion mapping detailed in [19].

2.3. Talking head animation
A 3D virtual talking head can be controlled by several pa-
rameters of different models. The head motion is described
using three degree of freedom (3DOF) rotation. Lip motion
can be described using three controls: The distance between
the upper and lower lip (closure), horizontal lip coordinates
(protrusion), and the vertical motion of the lips [20]. The lip
motion is calculated from EMA data in [21]. Due to the high
correlation of lip motion to the estimated EMA data subjec-
tive testing on the lip motion should give an indication of the
quality of the predicted articulatory features.

3. EXPERIMENTS

3.1. Data sets
Data of four participants of 2 males (m1 and m2) and 2 fe-
males (f1 and f2) were used in the following experiments [22].
The available free speech are about 16, 25, 17, and 24 minutes
for m1, m2, f1 and f2, respectively.

3.1.1. Head motion data

The recordings were performed at 100Hz with the Natural-
Point OptiTrack1 motion capture system which is expected to
provide more natural head movement expression than Elec-
troMagnetic Articulograph (EMA), used in [9], where speak-
ers wear EMA sensors and their head positioned inside a plex-
iglass cube.

Rotation matrices for the head and body were estimated
from maker data using singular value decomposition, and
then the relative head motions to the body were estimated by
removing the effect of body motion. The obtained relative
head motions were converted into extrinsic Euler angles using
trigonometric identities. Finally, delta features were added.

3.1.2. Acoustic features extraction

Audio-speech signal was recorded synchronously with head
and body motions, and down-sampled to 16 kHz. To com-
pare the performance of the predicted articulatory features,
we used prosodic features that was usually used in the liter-
ature. Pitch denotes the combined prosodic features of the
fundamental frequency (F0) that was extracted via an auto-
correlation and cepstrum based method, log-energy, loudness
contours. All these features (i.e. Pitch) were extracted with
openSMILE [23], and then smoothed with a moving average
filter with a window length of 10 frames. Pitch features were
computed from the audio signal over 25 ms windows at a

1http://www.naturalpoint.com/optitrack/
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Fig. 2. Segment distribution sorted by duration.

frame rate of 10 ms to match the frame rate of the head motion
data. Their first time derivatives were also added.

3.2. Experiments results
Similar to [16], we employed the mngu0 corpus to train the
reference phone-size acoustic-articulatory streams HMMs.
The first 12 MFCCs and log-energy with their first derivatives
was used as acoustic input features and (x, y)-coordinates of
the 6 actives EMA coils with their first derivatives was used
as articulatory output features. Using 5-fold cross validation,
we find an RMSE of 1.13 mm and Pearson’s correlation of
0.87. Subjective evaluation is used to evaluate the predicted
articulation on term of lip-sync.

A 5-fold cross validation procedure is used to evaluate the
performance of the predicted head motion. Preliminary ex-
periment shows that the optimal number of clusters variate
between 11 and 15, although it varies across the speakers.
Busso et al. [11] found that 16 clusters achieves the best
result of generating head motion sequences from prosodic
features. In this experiments, we used 15 clusters to train
speaker-dependent multi-stream HMMs and 16 mixture com-
ponents to train GMM.

Figure 2 shows the segments distribution by ACA and
HMM clustering techniques over all speakers. Using ACA
clustering, we can see that there are fast motion (less than
1 second = 100 frames), medium motion (between 1 and
2 seconds) and slow motion (up to 19 seconds). This divi-
sion has previously been seen in recorded data [6]. This clas-
sification is much clearer with ACA clustering than HMM-
clustering. Note that the shortest segments variate from 150
ms (i.e. phoneme size) to 390 ms (i.e. syllable size) across
speakers. Total number of segments is slightly different be-
tween ACA clustering technique and HMM one.

3.2.1. Objective evaluation
Canonical correlation analysis (CCA) is employed to evaluate
objectively the performance of the head motion synthesiser.
To measure the correlation between the original head motions
X ∈ Rp and the synthesised ones Y ∈ Rq , we define local
CCA rt for a time window of n frames that starts at tth frame
as

rt =
1

d

d∑
i=1

corr
(
A[i]TX[t:t+n−1], B

[i]TY[t:t+n−1]

)
(2)

where d = min(p, q) and A[i], B[i] are the canonical co-
efficients obtained by maximising the Pearson’s correlation
corr() of A[i]TX[1:T ] and B[i]TY[1:T ] over the whole data
streams such that



Table 1. Average local CCA and symmetric KLD (rL/KLD)
between original and synthesised head motion. The * + x and
/ denote significant differences (p < 0.05) found from ∧ # ◦

and †, respectively.

Speaker m1 m2 f1 f2

Approach+Cluster-Feature

GMM+∅-Pitch *0.35/322.9 *0.35/452.0 *0.35/241.9 *0.38/182.3

GMM+∅-EMA *0.36/19.0 *0.36/35.1 *0.35/19.9 *0.39/26.4

HMM+HMM-Pitch ∧+0.47/2.0 ∧+0.42/2.1 ∧0.48/2.0 ∧+0.45/3.2

HMM+HMM-EMA ∧0.49/1.7 ∧#0.46/0.6 ∧0.49/1.5 ∧#
x 0.48/2.4

HMM+ACA-Pitch ∧0.48/2.1 ∧#0.47/1.0 ∧/0.48/1.6 ∧
◦/0.46/2.8

HMM+ACA-EMA ∧#0.51/1.6 ∧#0.47/0.5 ∧†0.51/1.2 ∧#
◦† 0.50/2.3

(A,B) =
1

d

d∑
i=1

max
A,B

corr
(
A[i]TX[1:T ], B

[i]TY[1:T ]

)
(3)

The average local CCA rL is defined such that

rL = F−1

(
n

T

T−n+1∑
t=1;t=t+n;

F (rt)

)
(4)

where T is the total number of frames, F (r) is the Fisher
transformation defined as 1

2 ln
(

1+r
1−r

)
, which is employed to

make the values additive, and F−1() is its inverse function.
We consider also the similarity of the original and the syn-

thesized motions by using the symmetric Kullback-Leibler di-
vergence (KLD), where a smaller divergence value indicates
that the motions are more consistent.

Table 1 presents average local CCA rL and symmet-
ric KLD for all speakers. The approaches shown are GMM
that does not require any segmentation (denoted by GMM+∅),
HMM using HMM-clustering (denoted by HMM+HMM) and
HMM using temporal clustering (denoted by HMM+ACA).
We found that predicted articulatory features suits speech
driven head motion better than prosodic features. We also
found that the HMM-based method is significantly better
than the GMM-based one and ACA temporal clustering gives
better results than HMM-clustering for this task.

3.2.2. Subjective evaluation
In this study, we used Poser Pro software2 to design a female
and a male virtual avatar. The 3D virtual avatar’s head can be
controlled by several parameters. We decided to use lip pro-
trusion and lip aperture, as defined in [21], in order to simplify
the control of the movements of the mouth. From the pre-
dicted articulatory features, we estimated the mouth opening
from the predicted vertical lips coordinates and mouth pucker
from the predicted horizontal lips coordinates. We use the es-
timated head motion (i.e. 3 rotation angles) to animate the
avatar’s head.

We performed a subjective evaluation through an online
web application presenting the talking head animations with

2http://poser.smithmicro.com/
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question to answer. The animations3 were represented as
video clips showing lips and head motions. Note that there
was no movements of eyebrow and body. Lip movements
were the same in all the videos and was estimated form the
predicted articulatory features (EMA). There are 7 video clips
of 30 sec length for each speaker. After viewing the avatar’s
talking head animation of a selected speaker, the participants
are asked to choose from 5 point score scale (i.e. from very
bad (1) to very good (5)) related to the naturalness of lip
and head motions of the talking head animation as well as the
synchronousity between the speech and the animation.

The subjective tests were performed by 13 participants
aged between 25 and 58. The average preferences over speak-
ers’ animations are shown in Figure. 3. Synthesised head mo-
tion using HMM-based approach was tend to be more realistic
and natural than the synthesised motion using GMM-based
one. We also found that articulatory input features provide
head motion significantly better than those predicted from
prosodic features, and ACA clustering is slightly better than
HMM clustering. Lip motion was the same in all the anima-
tions. However, human perception of the lips vary according
to the head motion. Participants gave higher score for lip-sync
when the variation of head motion is smaller. This could be
explained by the fact that participants focus on the lips when
there is very small head movement. One factor that maybe
involved in this medium results is that we used only two pa-
rameters to control Poser lips models from EMA lips coils
coordinates.

4. CONCLUSION

This study shows that the articulatory features estimated from
speech were more effective than prosodic features for the task
of speech-driven head motion synthesis. HMM-based speech
driven head motion approach is better than GMM-based one.
ACA clustering is slightly better than HMM clustering. Both
objective and subjective evaluation show that our proposed
models to synthesise head motion give reasonable quality of
the virtual talking head animation.

Further studies will include an extension to speaker-
independent models with speaker adaptation. It will be inter-
esting to also take into account the other factors involved in
head motion such as the emotional state of the speaker.

3http://homepages.inf.ed.ac.uk/abenyou/icassp2014.html
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