
Chapter 7
Speaker Recognition Anti-spoofing
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Abstract Progress in the development of spoofing countermeasures for automatic
speaker recognition is less advanced than equivalent work related to other biometric
modalities. This chapter outlines the potential for even state-of-the-art automatic
speaker recognition systems to be spoofed. While the use of a multitude of different
datasets, protocols and metrics complicates the meaningful comparison of different
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vulnerabilities, we review previous work related to impersonation, replay, speech
synthesis and voice conversion spoofing attacks. The article also presents an analysis
of the early work to develop spoofing countermeasures. The literature shows that
there is significant potential for automatic speaker verification systems to be spoofed,
that significant further work is required to develop generalised countermeasures, that
there is a need for standard datasets, evaluation protocols andmetrics and that greater
emphasis should be placed on text-dependent scenarios.

7.1 Introduction

As one of our primary methods of communication, the speech modality has natural
appeal as a biometric in one of two different scenarios: text-independent and text-
dependent. While text-dependent automatic speaker verification (ASV) systems use
fixed or randomly prompted utterances with known text content, text-independent
recognisers operate on arbitrary utterances, possibly spoken in different languages.
Text-independent methods are best suited to surveillance scenarios where speech sig-
nals are likely to originate fromnoncooperative speakers. In authentication scenarios,
where cooperation can be readily assumed, text-dependent ASV is generally more
appropriate since better performance can then be achieved with shorter utterances.
On the other hand, text-independent recognisers are also used for authentication in
call-centre applications such as caller verification in telephone banking.1 On account
of its utility in surveillance applications, evaluation sponsorship and dataset avail-
ability, text-independent ASV dominates the field.

The potential for ASV to be spoofed is now well recognised [1]. Since speaker
recognition is commonly used in telephony or other unattended, distributed scenarios
without human supervision, speech is arguably more prone to malicious interference
or manipulation than other biometric signals. However, while spoofing is relevant
to authentication scenarios and therefore text-dependent ASV, almost all prior work
has been performed on text-independent datasets more suited to surveillance. While
this observation most likely reflects the absence of viable text-dependent datasets in
the recent past, progress in the development of spoofing countermeasures for ASV
is lagging behind that in other biometric modalities.2

Nonetheless, there is growing interest to assess the vulnerabilities of ASV to
spoofing and new initiatives to develop countermeasures [1]. This article reviews
the past work which is predominantly text-independent. While the use of different
datasets, protocols and metrics hinders such a task, we aim to describe and analyse
four different spoofing attacks considered thus far: impersonation, replay, speech
synthesis and voice conversion. Countermeasures for all four spoofing attacks are
also reviewed and we discuss the directions which must be taken in future work

1 http://www.nuance.com/landing-pages/products/voicebiometrics/freespeech.asp.
2 http://www.tabularasa-euproject.org/.

http://www.nuance.com/landing-pages/products/voicebiometrics/freespeech.asp
http://www.tabularasa-euproject.org/
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to address weaknesses in the current research methodology and to properly protect
ASV systems from the spoofing threat.

7.2 Automatic Speaker Verification

This section describes state-of-the-art approaches to text-independent automatic
speaker verification (ASV) and their potential vulnerabilities to spoofing.

7.2.1 Feature Extraction

Since speech signals are nonstationary, features are commonly extracted from short-
term segments (frames) of 20–30ms in duration. Typically, mel-frequency cepstral
coefficient (MFCC), linear predictive cepstral coefficient (LPCC), or perceptual lin-
ear prediction (PLP) features are used as a descriptor of the short-term power spec-
trum. These are usually appended with their time-derivative coefficients (deltas and
double-deltas) and they undergo various normalisations such as global mean removal
or short-term Gaussianization or feature warping [2]. In addition to spectral features,
prosodic and high-level features have been studied extensively [3–5], achieving com-
parable results to state-of-the-art spectral recognisers [6]. For more details regarding
popular feature representations used in ASV, readers are referred to [7].

The literature shows that ASV systems based on both spectral and prosodic fea-
tures are vulnerable to spoofing. As described in Sect. 7.3, state-of-the-art voice
conversion and statistical parametric speech synthesisers may also use mel-cepstral
and linear prediction representations; spectral recognisers can be particularly vul-
nerable to synthesis and conversion attacks which use ‘matched’ parameterisations.
Recognisers which utilise prosodic parameterisations are in turn vulnerable to human
impersonation.

7.2.2 Modelling and Classification

Approaches to ASV generally focus on modelling the long-term distribution of spec-
tral vectors. To this end, theGaussianmixturemodel (GMM) [8, 9] has become the de
facto modelling technique. Early ASV systems used maximum likelihood (ML) [8]
andmaximum a posteriori (MAP) [9] training. In the latter case, a speaker-dependent
GMM is obtained from the adaptation of a previously trained universal background
model (UBM). Adapted GMM mean supervectors obtained in this way were com-
bined with support vector machine (SVM) classifiers in [10]. This idea lead to the
development of many successful speaker model normalisation techniques including
nuisance attribute projection (NAP) [11, 12] and within-class covariance normalisa-
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tion (WCCN) [13]. These techniques aim to compensate for intersession variation,
namely differences in supervectors corresponding to the same speaker caused by
channel or session mismatch.

Parallel to the development of SVM-based discriminative models, generative fac-
tor analysis models were pioneered in [14–16]. In particular, joint factor analysis
(JFA) [14] can improve ASV performance by incorporating distinct speaker and
channel subspace models. These subspace models require the estimation of various
hyper-parameters using labelled utterances. Subsequently, JFA evolved into a much-
simplified model that is now the state of the art. The so-called total variability model
or ‘i-vector’ representation [17] uses latent variable vectors of low-dimension (typ-
ically 200–600) to represent an arbitrary utterance. Unlike JFA, the training of an
i-vector extractor is essentially an unsupervised process which leads to only one sub-
spacemodel. Accordingly it can be viewed as a approach to dimensionality reduction,
while compensation for session, environment and other nuisance factors are applied
in the computationally light back-end classification. To this end, probabilistic linear
discriminant analysis (PLDA) [18] with length-normalised i-vectors [19] has proven
particularly effective.

Being based on the transformation of short-term cepstra, conversion and synthe-
sis techniques also induce a form of ’channel shift’. Since they aim to attenuate
channel effects, approaches to intersession compensation may present vulnerabili-
ties to spoofing through the potential to confuse spoofed speech with channel-shifted
speech of a target speaker.However, even if there is some evidence to the contrary, i.e.,
that recognisers employing intersession compensation might be intrinsically more
robust to voice conversion attacks [20], all have their roots in the standard GMM
and independent spectral observations. Neither utilises time sequence information,
a key characteristic of speech which might otherwise afford some protection from
spoofing.

7.2.3 System Fusion

In addition to the development of increasingly robust models and classifiers, there is
a significant emphasis within the ASV community on the study of classifier fusion.
This is based on the assumption that independently trained recognisers capture dif-
ferent aspects of the speech signal not covered by any individual classifier. Fusion
also provides a convenient vehicle for large-scale research collaborations promot-
ing independent classifier development and benchmarking [21]. Different classifiers
can involve different features, classifiers, or hyper-parameter training sets [22]. A
simple, yet robust approach to fusion involves the weighted summation of the base
classifier scores, where the weights are optimised according to a logistic regression
cost function. For recent trends in fusion, readers are referred to [23].

While we are unaware of any spoofing or anti-spoofing studies on fused ASV
systems, some insight into their likely utility can be gained from related work in
fused, multi-modal biometric systems; whether the scores originate from different
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biometric modalities or sub-classifiers applied to the same biometric trait makes little
difference. A common claim is that multi-biometric systems should be inherently
resistant to spoofing since an impostor is less likely to succeed in spoofing all the
different subsystems. We note, however, that [24] suggests it might suffice to spoof
only one modality under a score fusion setting in the case where the spoofing of a
single, significantly weighted sub-system is particularly effective.

7.3 Spoofing and Countermeasures

Spoofingattacks are performedonabiometric systemat the sensor or acquisition level
to bias score distributions toward those of genuine clients, thus provoking increases
in the false acceptance rate (FAR). This section reviews past work to evaluate vul-
nerabilities and to develop spoofing countermeasures. We consider impersonation,
replay, speech synthesis and voice conversion.

7.3.1 Impersonation

Impersonation refers to spoofing attacks whereby a speaker attempts to imitate the
speech of another speaker and is one of the most obvious forms of spoofing and
earliest studied.

7.3.1.1 Spoofing

Thework in [25] showed that impersonators can readily adapt their voice to overcome
ASV, but only when their natural voice is already similar to that of the target (the
closest targets were selected from YOHO corpus using an ASV system). Further
work in [26] showed that impersonation increased FAR rates from close to 0% to
between 10 and 60%. Linguistic expertise was not found to be useful, except in cases
when the voice of the target speaker was very different to that of the impersonator.
However, contradictory findings reported in [27] suggest that evenwhile professional
imitators are better impersonators than average people, they are unable to spoof an
ASV system.

In addition to spoofing studies, impersonation has been a subject in acoustic-
phonetic studies [28–30]. These have shown that imitators tend to be effective in
mimicking long-term prosodic patterns and the speaking rate, though it is less clear
that they are as effective in mimicking formant and other spectral characteristics.
For instance, the imitator involved in the studies reported in [28] was not successful
in translating his formant frequencies towards the target, whereas the opposite is
reported in [31].
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Characteristic to all studies involving impersonation is the use of relatively few
speakers, different languages and ASV systems. The target speakers involved in such
studies are also often public figures or celebrities and it is difficult to collect techni-
cally comparable material from both the impersonator and the target. These aspects
of the past work makes it difficult to conclude whether or not impersonation poses a
genuine threat. Since impersonation is thought to involve mostly the mimicking of
prosodic and stylistic cues, it is perhaps considered more effective in fooling human
listeners than today’s state-of-the-art ASV systems [32].

7.3.1.2 Countermeasures

While the threat of impersonation is not fully understood due to limited studies
involving small datasets, it is perhaps not surprising that there is no prior work to
investigate countermeasures against impersonation. If the threat is proven to be gen-
uine, then the design of appropriate countermeasures might be challenging. Unlike
the spoofing attacks discussed below, all of which can be assumed to leave traces of
the physical properties of the recording and playback devices, or signal processing
artefacts from synthesis or conversion systems, impersonators are live human beings
who produce entirely natural speech.

7.3.2 Replay

Replay attacks involve the presentation of previously-recorded speech from a gen-
uine client in the form of continuous speech recordings, or samples resulting from
the concatenation of shorter segments. Replay is a relatively low-technology attack
within the grasp of any potential attacker even without specialised knowledge in
speech processing. The availability of inexpensive, high-quality recording devices
and digital audio editing software might suggest that replay is both effective and
difficult to detect.

7.3.2.1 Spoofing

In contrast to research involving speech synthesis and voice conversion, spoofing
attacks where large datasets are generally used for assessment, e.g. NIST datasets,
all the past work to assess vulnerabilities to replay attacks relates to small, often
purpose-collected datasets, typically involving no more than 15 speakers. While
results generated with such small datasets have low statistical significance, differ-
ences between baseline performance and that under spoofing highlight the vulnera-
bility.

The vulnerability of ASV systems to replay attacks was first investigated in a
text-dependent scenario [33] where the concatenation of recorded digits was tested
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against a hidden Markov model (HMM) based ASV system. Results showed an
increase in the FAR (EER threshold) from 1 to 89% for male speakers and from 5
to 100% for female speakers.

The work in [34] investigated text-independent ASV vulnerabilities through the
replaying of far-field recorded speech in a mobile telephony scenario where signals
were transmitted by analogue and digital telephone channels. Using a baseline ASV
system based on JFA, their work showed an increase in the EER of 1% to almost
70% when impostor accesses were replaced by replayed spoof attacks. A physical
access scenario was considered in [35]. While the baseline performance of their
GMM-UBM ASV system was not reported, experiments showed that replay attacks
produced an FAR of 93%.

7.3.2.2 Countermeasures

A countermeasure for replay attack detection in the case of text-dependent ASV was
reported in [36]. The approach is based upon the comparison of new access samples
with stored instances of past accesses. New accesses which are deemed too similar to
previous access attempts are identified as replay attacks. A large number of different
experiments, all relating to a telephony scenario, showed that the countermeasures
succeeded in lowering the EER in most of the experiments performed.

While some form of text-dependent or challenge-response countermeasure is usu-
ally used to prevent replay attacks, text-independent solutions have also been inves-
tigated. The same authors in [34] showed that it is possible to detect replay attacks
by measuring the channel differences caused by far-field recording [37]. While they
show spoof detection error rates of less than 10% it is feasible that today’s state-
of-the-art approaches to channel compensation will render some ASV systems still
vulnerable.

Two different replay attack countermeasures are compared in [35]. Both are based
on the detection of differences in channel characteristics expected between licit and
spoofed access attempts. Replay attacks incur channel noise from both the recording
device and the loudspeaker used for replay and thus the detection of channel effects
beyond those introduced by the recording device of the ASV system thus serves as
an indicator of replay. The performance of a baseline GMM-UBM system with an
EER 40% under spoofing attack falls to 29% with the first countermeasure and a
more respectable EER of 10% with the second countermeasure.

7.3.3 Speech Synthesis

Speech synthesis, commonly referred to as text-to-speech (TTS), is a technique
for generating intelligible, natural sounding artificial speech for any arbitrary text.
Speech synthesis is used widely in various applications including in-car navigation
systems, e-book readers, voice-over functions for the visually impaired and com-
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munication aids for the speech impaired. More recent applications include spoken
dialogue systems, communicative robots, singing speech synthesisers and speech-
to-speech translation systems.

Typical speech synthesis systems have two main components: text analysis and
speech waveform generation, which are sometimes referred to as the front-end and
back-end, respectively. In the text analysis component, input text is converted into
a linguistic specification consisting of elements such as phonemes. In the speech
waveform generation component, speech waveforms are generated from the pro-
duced linguistic specification.

There are four major approaches to speech waveform generation. In the early
1970s, the speech waveform generation component used very low-dimensional
acoustic parameters for each phoneme, such as formants, corresponding to vocal tract
resonances with hand-crafted acoustic rules [38]. In the 1980s, the speech waveform
generation component used a small database of phoneme units called ’diphones’ (the
second half of one phone plus the first half of the following phone) and concatenated
them according to the given phoneme sequence by applying signal processing, such
as linear predictive (LP) analysis, to the units [39]. In the 1990s, larger speech data-
bases were collected and used to select more appropriate speech units that match
both phonemes and other linguistic contexts such as lexical stress and pitch accent
in order to generate high-quality natural sounding synthetic speech with appropriate
prosody. This approach is generally referred to as ‘unit selection’, and is used inmany
speech synthesis systems, including commercial products [40–44]. In the late 1990s
another data-driven approach emerged, ‘Statistical parametric speech synthesis’, and
has grown in popularity in recent years [45–48]. In this approach, several acoustic
parameters are modelled using a time-series stochastic generative model, typically
a hidden Markov model (HMM). HMMs represent not only the phoneme sequences
but also various contexts of the linguistic specification in a similar way to the unit
selection approach. Acoustic parameters generated fromHMMs and selected accord-
ing to the linguistic specification are used to drive a vocoder (a simplified speech
production model with which speech is represented by vocal tract and excitation
parameters) in order to generate a speech waveform.

The first three approaches are unlikely to be effective in ASV spoofing since they
do not provide for the synthesis of speaker-specific formant characteristics. Further-
more, diphone or unit selection approaches generally require a speaker-specific data-
base that covers all the diphones or relatively large amounts of speaker-specific data
with carefully prepared transcripts. In contrast, state-of-the-art HMM-based speech
synthesisers [49, 50] can learn individualised speech models from relatively little
speaker-specific data by adapting background models derived from other speakers
based on the standard model adaptation techniques drawn from speech recognition,
i.e. maximum likelihood linear regression (MLLR) [51, 52].
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7.3.3.1 Spoofing

There is a considerable volume of research in the literature which has demonstrated
the vulnerability of ASV to synthetic voices generated with a variety of approaches
to speech synthesis. Experiments using formant, diphone and unit selection-based
synthetic speech in addition to the simple cut-and-paste of speech waveforms have
been reported [33, 34, 53].

ASV vulnerabilities to HMM-based synthetic speech were first demonstrated
over a decade ago [54] using an HMM-based, text-prompted ASV system [55] and
an HMM-based synthesiser where acoustic models were adapted to specific human
speakers [56, 57]. The ASV system scored feature vectors against speaker and back-
groundmodels composedof concatenated phonememodels.When testedwith human
speech the ASV system achieved an FAR of 0% and an FRR of 7%.When subjected
to spoofing attacks with synthetic speech, the FAR increased to over 70%, however
this work involved only 20 speakers.

Large-scale experiments using the Wall Street Journal corpus containing 284
speakers and two different ASV systems (GMM-UBM and SVM using Gaussian
supervectors) was reported in [58]. Using a state-of-the-art HMM-based speech syn-
thesiser, the FAR was shown to rise to 86 and 81% for the GMM-UBM and SVM
systems, respectively. Spoofing experiments using HMM-based synthetic speech
against a forensics speaker verification tool BATVOX was also reported in [59] with
similar findings. Today’s state-of-the-art speech synthesisers thus present a genuine
threat to ASV.

7.3.3.2 Countermeasures

Only a small number of attempts to discriminate synthetic speech fromnatural speech
have been investigated and there is currently no general solution which is indepen-
dent from specific speech synthesis methods. Previous work has demonstrated the
successful detection of synthetic speech based on prior knowledge of the acoustic
differences of specific speech synthesisers, such as the dynamic ranges of spectral
parameters at the utterance level [60] and variance of higher order parts of mel-
cepstral coefficients [61].

There are some attempts which focus on acoustic differences between vocoders
and natural speech. Since the human auditory system is known to be relatively insen-
sitive to phase [62], vocoders are typically based on a minimum-phase vocal tract
model. This simplification leads to differences in the phase spectra between human
and synthetic speech, differences which can be utilised for discrimination [58, 63].

Based on the difficulty in reliable prosody modelling in both unit selection and
statistical parametric speech synthesis, other approaches to synthetic speech detec-
tion use F0 statistics [64, 65]. F0 patterns generated for the statistical parametric
speech synthesis approach tend to be over-smoothed and the unit selection approach
frequently exhibits ‘F0 jumps’ at concatenation points of speech units.
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7.3.4 Voice Conversion

Voice conversion is a sub-domain of voice transformation [66] which aims to con-
vert one speaker’s voice towards that of another. The field has attracted increasing
interest in the context of ASV vulnerabilities for over a decade [67]. Unlike TTS,
which requires text input, voice conversion operates directly on speech samples. In
particular, the goal is to transform according to a conversion functionF the feature
vectors (x) corresponding to speech from a source speaker (spoofer) to that they are
closer to those of target a speaker (y):

y = F (x, θ). (7.1)

Most voice conversion approaches adopt a training phase which requires frame-
aligned pairs {(xt , yt )} in order to learn the transformation parameters θ . Frame align-
ment is usually achieved using dynamic time warping (DTW) on parallel source-
target training utterances with identical text content. The trained conversion function
is then applied to new source utterances of arbitrary text content at run-time.

A large number of specific conversion approaches have been reported. One of
the earliest and simplest techniques employs vector quantisation (VQ) with code-
books [68] or segmental codebooks [69] of paired source-target frame vectors to
represent the conversion function. However, VQ introduces frame-to-frame discon-
tinuity problems.Among themore recent conversionmethods, joint density Gaussian
mixture model (JD-GMM) [70–72] has become a standard baseline method. It
achieves smooth feature transformations using a local linear transformation. Despite
its popularity, known problems of JD-GMM include over-smoothing [73–75] and
over-fitting [76, 77] which has led to the development of alternative linear conversion
methods such as partial least square (PLS) regression [76], tensor representation [78],
a trajectory hidden Markov model [79], a mixture of factor analysers [80], local lin-
ear transformation [73] and a noisy channel model [81]. Non-linear approaches,
including artificial neural networks [82, 83], support vector regression [84], ker-
nel partial least square [85] and conditional restricted Boltzmann machines [86],
have also been studied. As alternatives to data-driven conversion, frequency warping
techniques [87–89] have also attracted attention.

The approaches to voice conversion considered above are usually applied to the
transformation of spectral envelope features, though the conversion of prosodic fea-
tures such as fundamental frequency [90–93] and duration [91, 94] has also been
studied. In contrast to parametric methods, unit selection approaches can be applied
directly to feature vectors coming from the target speaker to synthesise converted
speech [95]. Since they use target speaker data directly, unit selection approaches
arguably pose a greater risk to ASV than statistical approaches [96].

In general, only the most straightforward of the spectral conversion methods
have been utilised in ASV vulnerability studies. Even when trained using a non-
parallel technique and non-ideal telephony data, the baseline JD-GMM approach,
which produces over-smooth speech with audible artefacts, is shown to increase
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significantly the FAR ofmodernASV systems [20, 96]; unlike the human ear, current
recognisers are essentially ‘deaf’ to obvious conversion artefacts caused by imperfect
signal analysis-synthesis models and poorly trained conversion functions.

7.3.4.1 Spoofing

When applied to spoofing, voice conversion aims to synthesise a new speech signal
such that features extracted for ASV are close in some sense to the target speaker.
Some of the firstwork relevant to text-independentASV spoofing includes that in [32,
97]. The work in [32] showed that a baseline EER increased from 16 to 26% as a
result of voice conversion which also converted prosodic aspects not modelled in
typical ASV systems. The work in [97] investigated the probabilistic mapping of a
speaker’s vocal tract information towards that of another, target speaker using a pair
of tied speaker models, one of ASV features and another of filtering coefficients. This
work targeted the conversion of spectral-slope parameters. The work showed that a
baseline EER of 10% increased to over 60% when all impostor test samples were
replaced with converted voice. In addition, signals subjected to voice conversion did
not exhibit any perceivable artefacts indicative of manipulation.

The work in [20] investigated ASV vulnerabilities using a popular approach to
voice conversion [70] based on JD-GMMs, which requires a parallel training cor-
pus for both source and target speakers. Even if converted speech would be easily
detectable by human listeners, experiments involving five different ASV systems
showed universal susceptibility to spoofing. The FAR of the most robust, JFA sys-
tem increased from 3% to over 17%.

Other work relevant to voice conversion includes attacks referred to as artifi-
cial signals. It was noted in [98] that certain short intervals of converted speech yield
extremely high scores or likelihoods. Such intervals are not representative of intelligi-
ble speech but they are nonetheless effective in overcoming typical text-independent
ASV systems which lack any form of speech quality assessment. The work in [98]
showed that artificial signals optimised with a genetic algorithm provoke increases
in the EER from 10% to almost 80% for a GMM-UBM system and from 5% to
almost 65% for a factor analysis (FA) system.

7.3.4.2 Countermeasures

Some of the first work to detect converted voice draws on related work in synthetic
speech detection [100]. While the proposed cosine phase and modified group delay
function (MGDF) countermeasures proposed in [63, 99] are effective in detecting
spoofed speech (see Fig. 7.1), they are unlikely to detect converted voice with real-
speech phase [97].

Two approaches to artificial signal detection are reported in [101]. Experimen-
tal work shows that supervector-based SVM classifiers are naturally robust to
such attacks whereas all spoofing attacks can be detected using an utterance-level
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Fig. 7.1 An example of a spoofed speech detector combined with speaker verification [99]. Based
on prior knowledge that many analysis–synthesis modules used in voice conversion and TTS sys-
tems discard natural speech phase, phase characteristics parametrised via the modified group delay
function (MGDF) can be used for discriminating natural and synthetic speech

variability feature which detects the absence of natural, dynamic variability charac-
teristic of genuine speech. An alternative approach based on voice quality analysis
is less dependent on explicit knowledge of the attack but less effective in detecting
attacks.

A related approach to detect converted voice is proposed in [102]. Probabilistic
mappings between source and target speaker models are shown to yield converted
speechwith less short-term variability than genuine speech. The thresholded, average
pair-wise distance between consecutive feature vectors is used to detect converted
voice with an EER of under 3%.

Due to fact that current analysis–synthesis techniques operate at the short-term
frame level, the use of temporal magnitude/phase modulation features, a form of
long-term feature, are proposed in [103] to detect both speech synthesis and voice
conversion spoofing attacks. Another form of long-term feature is reported in [104].
The approach is based on the local binary pattern (LBP) analysis of sequences of
acoustic vectors and is successful in detecting converted voice. Interestingly, the
approach is less reliant on prior knowledge and can also detect different spoofing
attacks, examples of which were not used for training or optimisation.

7.3.5 Summary

As shown above, ASV spoofing and countermeasures have been studied with a mul-
titude of different datasets, evaluation protocols and metrics, with highly diverse
experimental designs, different ASV recognisers and with different approaches to
spoofing; the lack of any commonality makes the comparison of results, vulnera-
bilities and countermeasure performance an extremely challenging task. Drawing
carefully upon the literature and the authors’ own experience with various spoofing
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Table 7.1 A summary of the four approaches to ASV spoofing, their expected accessibility and
risk

Spoofing Description Accessibility Effectiveness (risk)

technique (practicality) Text-indep. Text-dep.

Impersonation [25,
27, 32, 105]

Human voice mimic Low Low/unknown Low/unknown

Replay [33, 34] Replay of
pre-recorded
utterance

High High Low (rand.
phrase) to
high (fixed
phrase)

Text-to-speech
[54, 55, 58]

Speaker-specific
speech
generation from
text input

Medium
(now) to
high
(future)

High High

Voice conversion
[20, 32, 97,
98]

Speaker identity
conversion using
speech only

Medium
(now) to
high
(future)

High High

approaches, we have nevertheless made such an attempt. Table 7.1 aims to sum-
marise the threat of spoofing for the four approaches considered above. Accessibility
(practicality) reflects whether the threat is available to the masses or limited to the
technically knowledgeable. Effectiveness (risk), in turn, reflects the success of each
approach in provoking higher false acceptance rates.

Although some studies have shown that impersonation can fool ASV recognisers,
in practice, the effectiveness seems to depend both on the skill of the impersonator,
the similarity of the attacker’s voice to that of the target speaker and on the recogniser
itself. Replay attacks are highly effective in the case of text-independent ASV and
fixed-phrase text-independent systems. Even if the effectiveness is reduced in the
case of randomised, phrase-prompted text-dependent systems, replay attacks are the
most accessible approach to spoofing, requiring only a recording and playback device
such as a tape recorder or a smart phone.

Speech synthesis and voice conversion attacks pose the greatest risk. While voice
conversion systems are not yet commercially available, both free and commercial
text-to-speech (TTS) systems with pre-trained voice profiles are widely available,
even if commercial off-the-shelf (COTS) systems do not include the functional-
ity for adaptation to specific target voices. While accessibility is therefore medium
in the short term, speaker adaptation remains a highly active research topic. It is
thus only a matter of time until flexible, speaker-adapted synthesis and conversion
systems become readily available. Then, both effectiveness and accessibility should
be considered high.
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7.4 Discussion

In this section, we discuss current approaches to evaluation and some weaknesses in
the current evaluation methodology. While much of the following is not necessarily
specific to the speech modality, with research in spoofing and countermeasures in
ASV lagging behind that related to other biometric modalities, the discussion below
is particularly pertinent.

7.4.1 Protocols and Metrics

While countermeasures can be integrated into existing ASV systems, they are most
often implemented as independent modules which allow for the explicit detection of
spoofing attacks. The most common approach in this case is to concatenate the two
classifiers in series.

The assessment of countermeasure performance on its own is relatively straight-
forward; results are readily analysed with standard detection error trade-off (DET)
profiles [106] and related metrics. It is often of interest, however, that the assessment
reflects their impact on ASV performance. Assessment is then non-trivial and calls
for the joint optimisation of combined classifiers. Results furthermore reflect the
performance of specific ASV systems. As described in Sect. 7.3, there are currently
no standard evaluation protocols, metrics or ASV systems which might otherwise be
used to conduct evaluations. There is a thus a need to define such standards in the
future.

Candidate standards are being drafted within the scope of the EU FP7 TABULA
RASAproject.3 Here, independent countermeasures preceding biometric verification
are optimised at three different operating points where thresholds are set to obtain
FARs (the probability of labelling a genuine access as a spoofing attack) of 1, 5 or
10%. Samples labelled as genuine accesses are then passed to the verification sys-
tem.4 Performance is assessed using four different DET profiles,5 examples of which
are illustrated in Fig. 7.2. The four profiles illustrate performance of the baseline sys-
tem with zero-effort impostors, the baseline system with active countermeasures, the
baseline system where all impostor accesses are replaced with spoofing attacks and,
finally, the baseline system with spoofing attacks and active countermeasures.

Consideration of all four profiles is needed to gauge the impact of countermeasure
performance on licit transactions (any deterioration in false rejection—difference
between first and second profiles) and improved robustness to spoofing (improve-
ments in false acceptance—difference between third and fourth profiles). While the

3 http://www.tabularasa-euproject.org/.
4 In practice samples labelled as spoofing attacks cannot be fully discarded since so doing would
unduly influence false reject and false acceptance rates calculated as a percentage of all accesses.
5 Producedwith theTABULARASAScore-toolkit: http://publications.idiap.ch/downloads/reports/
2012/Anjos_Idiap-Com-02-2012.pdf.

http://www.tabularasa-euproject.org/
http://publications.idiap.ch/downloads/reports/2012/Anjos_Idiap-Com-02-2012.pdf.
http://publications.idiap.ch/downloads/reports/2012/Anjos_Idiap-Com-02-2012.pdf.
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Fig. 7.2 An example of four DET profiles needed to analyse vulnerabilities to spoofing and coun-
termeasure performance, both on licit and spoofed access attempts. Results correspond to spoofing
attacks using synthetic speech and a standard GMM-UBM classifier assessed on the male subset of
the NIST’06 SRE dataset

interpretation of such profiles is trivial, different plots are obtained for each coun-
termeasure operating point. Further work is required to design intuitive, universal
metrics which represent the performance of spoofing countermeasures when com-
bined with ASV.

7.4.2 Datasets

While some works have shown the potential for detecting spoofing without prior
knowledge or training data indicative of a specific attack [63, 104, 107], all previous
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works are based on some implicit prior knowledge, i.e. the nature of the spoof-
ing attack and/or the targeted ASV system is known. While training and evaluation
data with known spoofing attacks might be useful to develop and optimise appro-
priate countermeasures, the precise nature of spoofing attacks can never be known
in practice. Estimates of countermeasure performance so obtained should thus be
considered at best optimistic. Furthermore, the majority of the past work was also
conducted under matched conditions, i.e. data used to learn target models and that
used to effect spoofing were collected in the same or similar acoustic environment
and over the same or similar channel. The performance of spoofing countermeasures
when subjected to realistic session variability is then unknown.

While much of the past work already uses standard datasets, e.g. NIST SRE data,
spoofed samples are obtained by treating them with non-standard algorithms. Stan-
dard datasets containing both licit transactions and spoofed speech from a multitude
of different spoofing algorithms and with realistic session variability are therefore
needed to reduce the use of prior knowledge, to improve the comparability of differ-
ent countermeasures and their performance against varied spoofing attacks. Collab-
oration with colleagues in other speech and language processing communities, e.g.
voice conversion and speech synthesis, will help to assess vulnerabilities to state-
of-the art spoofing attacks and also to assess countermeasures when details of the
spoofing attacks are unknown. The detection of spoofing will then be considerably
more challenging but more reflective of practical use cases.

7.5 Conclusions

This contribution reviews previous work to assess the threat from spoofing to auto-
matic speaker verification (ASV). While there are currently no standard datasets,
evaluation protocols or metrics, the study of impersonation, replay, speech synthe-
sis and voice conversion spoofing attacks reported in this article indicate genuine
vulnerabilities. We nonetheless argue that significant additional research is required
before the issue of spoofing in ASV is properly understood and conclusions can be
drawn.

In particular, while the situation is slowly changing, the majority of past work
involves text-independent ASV, most relevant to surveillance. The spoofing threat is
pertinent in authentication scenarios where text-dependent ASV might be preferred.
Greater effort is therefore needed to investigate spoofing in text-dependent scenarios
with particularly careful consideration being given to design appropriate datasets and
protocols.

Second, almost all ASV spoofing countermeasures proposed thus far are depen-
dent on training examples indicative of a specific attack. Given that the nature of
spoofing attacks can never be known in practice, and with the variety in spoofing
attacks being particularly high in ASV, future work should investigate new coun-
termeasures which generalise well to unforeseen attacks. Formal evaluations with
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standard datasets, evaluation protocols, metrics and even standard ASV systems are
also needed to address weaknesses in the current evaluation methodology.

Finally, some of the vulnerabilities discussed in this paper involve relatively high-
cost and high-technology attacks.While the trend of open source softwaremay cause
this to change, such attacks are beyond the competence of the unskilled and in such
case the level of vulnerability is arguably overestimated. While we have touched on
this issue in this article, a more comprehensive risk-based assessment is needed to
ensure such evaluations are not overly-alarmist. Indeed, the work discussed above
shows that countermeasures, some of them relatively trivial, have the potential to
detect spoofing attacks with manageable impacts on system usability.
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6. Kockmann M, Ferrer L, Burget L, Cěrnocký J (2011) i-vector fusion of prosodic and cepstral
features for speaker verification. In: Proceedings of interspeech, annual conference of the
international speech communication association, Florence, Italy, pp 265–268

7. Kinnunen T, Li H (2010) An overview of text-independent speaker recognition: from features
to supervectors. Speech Commun 52(1):12–40

8. Reynolds D, Rose R (1995) Robust text-independent speaker identification using Gaussian
mixture speaker models. IEEE Trans Speech Audio Process 3:72–83

9. Reynolds DA, Quatieri TF, Dunn RB (2000) Speaker verification using adapted Gaussian
mixture models. Digital Signal Process 10(1):19–41

10. CampbellWM, SturimDE, Reynolds DA (2006) Support vector machines using GMMsuper-
vectors for speaker verification. IEEE Signal Process Lett 13(5):308–311

11. Solomonoff A, CampbellW, Boardman I (2005) Advances in channel compensation for SVM
speaker recognition. In: Proceedings of IEEE international conference on acoustics, speech
and signal process (ICASSP), pp 629–632, Philadelphia, USA
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