
Probabilistic Linear Discriminant Analysis with Bottleneck
Features for Speech Recognition

Liang Lu, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK
{liang.lu, s.renals}@ed.ac.uk

Abstract

We have recently proposed a new acoustic model based on prob-
abilistic linear discriminant analysis (PLDA) which enjoys the
flexibility of using higher dimensional acoustic features, and is
more capable to capture the intra-frame feature correlations. In
this paper, we investigate the use of bottleneck features obtained
from a deep neural network (DNN) for the PLDA-based acous-
tic model. Experiments were performed on the Switchboard
dataset — a large vocabulary conversational telephone speech
corpus. We observe significant word error reduction by using
the bottleneck features. In addition, we have also compared
the PLDA-based acoustic model to three others using Gaussian
mixture models (GMMs), subspace GMMs and hybrid deep
neural networks (DNNs), and PLDA can achieve comparable
or slightly higher recognition accuracy from our experiments.
Index Terms: speech recognition, bottleneck features, proba-
bilistic linear discriminant analysis

1. Introduction
Deep neural network (DNN) approaches have recently pro-
duced significant increases in the accuracy of acoustic mod-
elling for speech recognition, across a range of application do-
mains and evaluation datasets [1, 2]. Compared to the hybrid
neural network / hidden Markov model (HMM) architecture
studied in the early 1990s [3, 4], DNNs typically use more hid-
den layers and a wider output layer. The deep architecture en-
ables a DNN to learn more invariant and discriminative features
before performing classification using the final softmax output
layer. However, there has been only limited success in the adap-
tation of DNN-based acoustic models [5, 6], and in general
they have to “learn by seeing” [7] — high recognition accu-
racy is usually obtained in matched training and test conditions.
Thus hybrid DNN/HMM approaches may perform poorly in un-
seen acoustic conditions, especially if there is limited in-domain
training data.

Tandem systems [8] use a neural network to provide fea-
tures for a conventional Gaussian mixture model (GMM) based
system, and a particular example of the neural network de-
rived features is known as the bottleneck features [9, 10].
This method can take advantages of DNN feature extraction
while enjoying the efficient adaptation algorithms for GMMs.
However, GMMs typically employ diagonal covariance matri-
ces, which limits their ability to learn feature correlations, as
well as effectively restricting the bottleneck features to a lim-
ited dimensionality for computational reasons. As a result, a
pre-processing approach such as principal component analysis
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(PCA) is often used to decorrelate and reduce the dimensional-
ity of the bottleneck features.

We recently introduced a new acoustic model based on
probabilistic linear discriminant analysis (PLDA) [11], which
aims to overcome these constraints. It can be viewed as an ex-
tension of the GMM which is able to use higher dimensional
feature vectors and can learn feature correlations in subspaces.
PLDA was originally proposed for face recognition [12], and is
now very well studied for speaker recognition using the i-vector
framework [13, 14, 15]. PLDA is a probabilistic extension of
linear discriminant analysis (LDA) [12]; similar to joint factor
analysis (JFA) [16], PLDA factorizes the variability of the ob-
servations for a specific class (e.g. one speaker) using two la-
tent variables: a within-class variable which is shared by all the
observations of this class, and a between-class variable which
is used to explain the variability to each observation. Further-
more when applied to speaker identification JFA operates in the
GMM mean supervector domain, while the PLDA-based acous-
tic model directly operates in the acoustic feature domain.

We have previously demonstrated the feasibility of the
PLDA-based acoustic model, its flexibility in using feature vec-
tors of various dimensions, and its ability to learn feature corre-
lations [11]. In this paper, we investigate the use of bottleneck
features with PLDA-based acoustic models, in order to take the
advantage of DNNs as feature extractors. In experiments on the
Switchboard corpus [17], we compare this model to three other
acoustic modelling approaches: GMMs, subspace GMMs (SG-
MMs) [18] and hybrid DNN/HMMs [1], and show that compa-
rable or better recognition accuracy can be obtained.

2. PLDA-based Acoustic Model
The PLDA-based acoustic model is a generative model in which
an acoustic feature vector yt ∈ Rd from the j-th HMM state at
time index t is expressed as:

yt|j = Uxjt + Gzj + b + εjt, εjt ∼ N (0,Λ), (1)

where zj ∈ Rq is the state variable (equivalent to the between-
class identity variable in JFA) shared by the whole set of acous-
tic frames generated by the j-th state. xjt ∈ Rp is the obser-
vation variable (equivalent to the within-class channel variable
in JFA) which explains the per-frame variability. Usually, the
dimensionality of these two latent variables is smaller than that
of the feature vector yt, i.e. p ≤ d, q ≤ d. U ∈ Rd×p and
G ∈ Rd×q are two low rank matrices which span the subspaces
to capture the major variations for xjt and zj respectively. They
are analogous to the within-class and between-class subspaces
in the standard LDA formulation, but are estimated probabilis-
tically. b ∈ Rd denotes the bias and εjt ∈ Rd is the residual
noise which is assumed to be Gaussian with zero mean and di-
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Figure 1: An illustration of a PLDA-HMM acoustic model,
where the state variable zj depends on j-th HMM state, and
each observation yt depends both on the state variable zj and
the observation variable xjt. The residual noise variable εjt is
omitted for clarity.

agonal covariance. Figure 1 illustrates the concept of combining
PLDA with an HMM for acoustic modelling.

Using a single PLDA has a limited modelling capacity since
it only approximates a single Gaussian distribution. In [11], we
used a mixture of PLDAs which can be written as

yt|j,m = Umxjmt + Gmzjm + bm + εjmt, (2)
εjmt ∼ N (0,Λm) (3)

where 1 ≤ m ≤ M is the component index. Denoting c to
be the component indicator variable, the prior (weight) of each
component is written as P (c = m|j) = πjm. In this case, the
model extends a conventional GMM by factorising the variabil-
ity (2). By using low-rank matrices for Gm and Um, PLDA is
more flexible in using higher dimensional feature inputs [11].
Moreover, it can learn feature correlations by using approxi-
mated full covariance matrices, which can be seen from the
computation of the likelihood functions by marginalising out
the observation variable xjmt using its prior distribution:

p(yt|zjm, j,m)

=

∫
p(yt|xjmt, zjm, j,m)P (xjmt)dxjmt (4)

= N
(
yt;Gmzjm + bm,UmUT

m + Λm
)
. (5)

where we have used N (0, I) as the prior distribution for
P (xjmt), following the practice used for speaker and face
recognition using JFA and PLDA [19, 20]. Note that the like-
lihood can be efficiently computed without inverting matrices
UmUT

m + Λm directly, but by using the following Woodbury
matrix inversion lemma as in [19, 20]:

(UmUT
m + Λm)−1

= Λ−1
m − Λ−1

m Um(I + UT
mΛ−1

m Um)−1UT
mΛ−1

m (6)

= Λ−1
m − LLT (7)

where L = Λ−1
m Um(I + UT

mΛ−1
m Um)−1/2. This makes it

computationally feasible when yt is high dimensional. As dis-
cussed in [11] , this acoustic model is closely related to factor
analysed HMMs [21] and SGMMs [18].

3. Model Training
A PLDA-based acoustic model may be trained using an EM al-
gorithm [11], which is based on the assumption that the two
latent variables xjmt and zjm are conditionally independent.
This allows the updates of the projection matrices Um and Gm

to be interleaved. Conditional independence of the latent vari-
ables was not assumed when using PLDA for face recognition
[12, 20], but a joint model training approach was used. For
PLDA-based acoustic modelling, such kind of training algo-
rithm can be derived by representing the model from stacking
the T frames of j-th HMM state and m-th PLDA component:
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or in the form of the new notation

ȳ|j,m = H̄mv̄jm + b̄m + ε̄jm. (8)

This is a factor analysis model, and the model training algo-
rithms for mixtures of factor analysers may be used [22, 16].
Unfortunately, this approach is computationally demanding for
acoustic modelling, since the number of frames is normally very
large, which results in significant computational and memory
demands.

This difficulty can be circumvented if xjmt and zjm are
assumed to be conditionally independent. In this case, the EM
auxiliary function to update Um is

Q(Um) =
∑
jt

∫
P (j,m|yt)P (xjmt|yt, z̄jm, j,m)

× log p(yt|xjmt, z̄jm, j,m)dxt

=
∑
jt

γjmtE
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T
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]
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=
∑
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(
Λ−1
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(
− 1

2
UmE[xjmtx

T
jmt]U

T
m

+ (yt −Gmz̄jm − bm)ET [xjmt]U
T
m

))
+ k

where k is a constant that is independent of Um, γjmt denotes
the component posterior probability P (j,m|yt), and z̄jm de-
notes the mean of the posterior distribution of zjm which is
computed from the previous iteration. E[·] is the expectation
operation over the posterior distribution of xjmt, which can be
computed from the Bayes’ rule:

P (xjmt|yt, z̄jm, j,m)

=
p(yt|xjmt, z̄jm, j,m)P (xjmt)∫

p(yt|xjmt, z̄jm, j,m)P (xjmt)dxjmt
. (9)



26 39 52 65 80
26

27

28

29

30

31

32

33

34

W
ER

 (%
)

dim of bottleneck features

 

 
BN DNN
GMM + Tandem
GMM + Tandem + LDA_STC
PLDA + Tandem

Figure 2: WERs on the Switchboard evaluation set using 33
hours of training data.

Using N (0, I) as the prior for xjmt, and with some algebraic
rearrangement, we can obtain

P (xjmt|yt, z̄jm, j,m) = N (xjmt;V
−1
m wjmt,V

−1
m ) (10)

Vm = I + UT
mΛ−1

m Um (11)

wjmt = UT
mΛ−1

m (yt −Gmz̄jm − bm) (12)

We then set ∂Q(Um)/∂Um = 0 to obtain the update for Um

Um =

(∑
jt

γjmt(yt −Gmz̄jm − bm)ET [xjmt]

)

×

(∑
jt

γjmtE
[
xjmtx

T
jmt

])−1

(13)

The updates for {Gm,bm,Λm} can be derived similarly.

4. Experiments
We have performed experiments using the Switchboard corpus
[17], in which the training set comprises about 300 hours of
conversational telephone speech. The Hub-5 Eval 2000 data
[23] is used as the test set. The experiments were performed us-
ing the Kaldi speech recognition toolkit [24], which we have
extended with an implementation of the PLDA-based acous-
tic model. Our current implementation does not yet support
speaker adaptation and discriminative training, and hence in the
following experiments, we have used maximum likelihood es-
timation and have not employed speaker adaptation (aside from
speaker-based cepstral mean and variance normalisation). We
used the pronunciation lexicon that was supplied by the Mis-
sissippi State transcriptions [25] which has more than 30,000
words, and a trigram language model was used for decoding.

4.1. Baseline systems

Table 1 shows the word error rates (WERs) of four types
of speaker-independent acoustic models without sequence dis-
criminative training: GMM, SGMM, PLDA, and hybrid DNN.
Each model was trained using about 33 hours of Switchboard
training data, and we show separate results for the Callhome
(CHM) and Switchboard (SWB) evaluation sets. The number
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Figure 3: WERs on the CallHome evaluation set using 33 hours
of training data.

Table 1: WERs (%) using 33 hours Switchboard training data

System Feature CHM SWB Avg
GMM MFCC 0+∆+∆∆ 54.0 36.6 45.4
GMM MFCC 0+LDA STC (±3) 50.6 33.5 42.2
GMM MFCC 0+LDA STC (±4) 50.7 33.3 42.1
GMM MFCC 0+LDA STC (±5) 50.9 34.1 42.4
PLDA MFCC 0 (±3) 49.5 32.4 41.1
PLDA MFCC 0 (±4) 49.3 31.5 40.6
PLDA MFCC 0 (±5) 49.7 33.2 41.6
PLDA MFCC 0+∆+∆∆ (±1) 49.9 32.4 41.3
PLDA MFCC 0+∆+∆∆ (±2) 52.2 34.0 43.1
SGMM MFCC 0+∆+∆∆ 48.5 31.4 40.1
DNN hybrid MFCC 0+∆+∆∆ (±4) 43.1 27.6 35.4

of tied HMM states is around 2,400 for each of the acoustic
models shown in this table. The GMM system has about 30,000
Gaussian components. The number of components in the back-
ground model is 400 for both PLDA and SGMM systems. There
were 20,000 sub-states (with 40-dimensional sub-state vectors)
in the SGMM system. In the PLDA system, xjmt and zjm are
also 40-dimensional. In the DNN system, the feature input was
obtained by splicing 12-dimensional MFCCs with zeroth, delta
and delta-delta coefficients (MFCC 0+∆+∆∆) using a context
size of 9 frames (i.e. ±4). Six hidden layers each with 1,024
nodes were used. The size of DNN output was the number of
tied HMM states (around 2400), giving a total of about 8 million
parameters. We have also studied different forms of feature in-
put for GMM and PLDA acoustic models. From Table 1, we see
that the best PLDA system has a consistently lower WER than
the GMM systems with and without linear discriminant analysis
(LDA) and semi-tied covariance matrix (STC) [26] when using
spliced MFCC 0 as feature input. It is also comparable with
SGMMs, but is more flexible with respect to the feature vec-
tor dimensionality. The DNN system has a significantly lower
WER compared to the other acoustic models.

4.2. Bottleneck features

We trained bottleneck DNNs — using the same training data
and the same kind of feature input — by reducing the size of
the fifth hidden layer. We evaluated different sizes of the bot-
tleneck layer, ranging from 26 to 80. The WERs of BN-DNNs
were only slightly higher than the standard DNN system (0.5%



Table 2: WERs (%) using 33 hours Switchboard training data

System Feature CHM SWB Avg
DNN hybrid MFCC 0+∆+∆∆ (±4) 43.1 27.6 35.4
BN hybrid MFCC 0+∆+∆∆ (±4) 44.0 28.8 36.4
GMM MFCC 0+∆+∆∆ 54.0 36.6 45.4
GMM MFCC 0+LDA STC (±3) 50.6 33.5 42.2
GMM Tandem 44.8 30.9 37.9
GMM Tandem + LDA STC 43.2 27.4 35.3
SGMM Tandem + LDA STC 41.7 26.7 34.3
PLDA Tandem 42.6 27.1 34.9

Table 3: WERs (%) using 109 hours Switchboard training data

System Feature CHM SWB Avg
DNN hybrid MFCC 0+∆+∆∆ (±4) 36.3 22.0 29.2
BN hybrid MFCC 0+∆+∆∆ (±4) 37.7 22.7 30.2
GMM MFCC 0+∆+∆∆ 48.9 31.0 40.1
GMM MFCC 0+LDA STC (±3) 44.9 28.0 36.5
GMM Tandem 39.7 25.5 32.6
GMM Tandem + LDA STC 36.7 22.1 29.5
SGMM Tandem + LDA STC 36.2 21.7 29.0
PLDA Tandem 35.9 21.6 28.8

– 1.0% absolute). We then trained the Tandem GMM and PLDA
systems by concatenating the bottleneck and 39-dimensional
MFCC 0+∆+∆∆ coefficients using the same system configu-
ration as proposed in [8]. We also show results of using LDA to
reduce the dimensionality of Tandem features to be 40 followed
by STC to de-correlate the features. Figures 2 and 3 present the
results using different sizes of bottleneck layers. Overall, in-
creasing the size of bottleneck layer from 26 to 801 did not bring
notable improvement to the three types of acoustic models. In
fact, without LDA and STC transform, the “GMM+Tandem”
system is prone to overfitting and may achieve much lower ac-
curacy given higher dimensional bottleneck features. Again, the
results demonstrates the flexibility of PLDA acoustic models in
terms of using input feature vectors of varying dimension.

Table 2 summarises the results of using 33 hours of train-
ing data. Overall, the GMM system achieved a significant re-
duction in WER by using Tandem features. In addition, using
the LDA and STC transforms for feature dimension reduction
and de-correlation results in another ∼ 1.5% absolute WER
reduction for the GMM-based system, which is comparable to
the DNN hybrid system. The PLDA acoustic model can cap-
ture the feature correlations in the subspace, and outperforms
the GMM system with LDA STC transform using the same
Tandem features. We also show results of the SGMM system
with Tandem features. Since using full covariance matrices is
computationally prohibitive and prone to model overfitting, we
applied the LDA STC transform obtained from the GMM sys-
tem to the Tandem features before training the SGMM acoustic
model. This was successful, with around 15% relative WER
reduction compared to the results shown in Table 1, and it also
slightly outperforms the PLDA and DNN systems.

4.3. Increased training data

To investigate whether the conclusion from the previous experi-
ments holds in case of increased training data, we performed ex-
periments using around 109 hours of Switchboard training data.
In this case, we still used 6 hidden layers for the hybrid DNN
system, but increase the size of each hidden layer to be 1200.
The number of output nodes is around 4000, giving a total of

1The corresponding Tandem features are 65- to 119-dimensional.

Table 4: WERs (%) using 109 hours Switchboard training data.
Here, the bottleneck features were extracted from the bottleneck
DNN system trained using 33 hours of data.

System Feature CHM SWB Avg
GMM Tandem 41.7 26.3 34.0
GMM Tandem + LDA STC 39.0 24.1 31.6
SGMM Tandem + LDA STC 38.3 23.3 30.8
PLDA Tandem 38.3 23.6 31.0

approximately 12.5 million parameters. Again, the bottleneck
DNN system has the same configuration as the hybrid DNN ex-
cept that the size of the bottleneck layer is set to be 26. The
GMM systems have around 90,000 Gaussian components, and
the SGMM system has about 60,000 sub-state vectors. Again,
M = 400 for the PLDA system, which is the same size as the
UBM in the SGMM acoustic model. A summary of the results
is given in Table 3 where we can see a similar trend as in Table
2. The “GMM+Tandem+LDA STC” system is able to achieve
almost the same WER as the hybrid DNN system, while the
PLDA and SGMM systems can perform slightly better.

We then investigated the generalisation ability of the bot-
tleneck features. We extracted the bottleneck features for the
109 hours of training data using the bottleneck DNN trained
from 33 hours of data discussed in section 4.2. We then repro-
duced the Tandem systems using the GMM, SGMM and PLDA
acoustic modelling approaches. The WERs are given in Table
4. By looking at the GMM systems, we observe that using such
kind of bottleneck features can still lead to much higher recog-
nition accuracy compared to using the MFCCs alone, yet the
overall WERs are considerably higher than those reported in Ta-
ble 3. This may indicate that using more and matched training
data to train the bottleneck DNN to extract the features is ben-
eficial for the Tandem system. Note that the comparison was
performed using the Switchboard database which has limited
differences in the acoustic conditions. We may expect a further
drop in terms of recognition accuracy when there is a mismatch
between the training and test conditions. However, as we dis-
cussed in section 1, there are efficient adaptation algorithms for
acoustic models within the Gaussian family which can mitigate
this problem. It is necessary to point out that the hybrid DNN
system be can be significantly improved by using feature space
MLLR (fMLLR) transformation [27] and sequence training cri-
terion [28, 29, 30]. It is worthwhile to look at if the bottleneck
features extracted from such kind DNN systems can further im-
prove the Tandem system. In addition, the PLDA-based acous-
tic model may be further improved by tying the state variables
across the components [11], which is one of our future works.

5. Conclusions
In this paper, we reviewed the recently proposed PLDA-based
acoustic modelling approach, and investigated the use of bot-
tleneck features from a DNN for this model. We demonstrated
the flexibility of this model in making use of such kind of fea-
ture representation, and have obtained comparable or higher
recognition accuracy compared to other acoustic model includ-
ing GMMs, SGMMs, and hybrid DNNs. The current imple-
mentation of PLDA for acoustic modelling may be improved
by sharing model parameters, e.g. through tying the state vari-
ables across the model components which would be analogous
to state vectors used in SGMMs. Future work also include
speaker adaptation and discriminative training for this model.
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