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Abstract. In this paper, we investigate the use of high-level features
for recognizing human emotions at the word-level in natural conversa-
tions with virtual agents. Experiments were carried out on the 2012 Au-
dio/Visual Emotion Challenge (AVEC2012) database, where emotions
are defined as vectors in the Arousal-Expectancy-Power-Valence emo-
tional space. Our model using 6 novel disfluency features yields signif-
icant improvements compared to those using large number of low-level
spectral and prosodic features, and the overall performance difference be-
tween it and the best model of the AVEC2012 Word-Level Sub-Challenge
is not significant. Our visual model using the Active Shape Model visual
features also yields significant improvements compared to models using
the low-level Local Binary Patterns visual features. We built a bimodal
model By combining our disfluency and visual feature sets and applying
Correlation-based Feature-subset Selection. Considering overall perfor-
mance on all emotion dimensions, our bimodal model outperforms the
second best model of the challenge, and comes close to the best model.
It also gives the best result when predicting Expectancy values.

1 Introduction

Affective Computing, the study of recognizing, understanding, and synthesising
human emotions using computational technologies, has shown great potential
both in academic studies of human behaviour as well as industrial applications.
For example, by detecting affective states, such as boredom, an Intelligent Tutor-
ing System can improve student learning and increase user satisfaction [1]. Mul-
timodal emotion recognition has recently become a focus of affective computing.
However, this task remains challenging, especially with respect to spontaneous
spoken dialogue. Much of the early work on this topic was based on acted ex-
pressions of emotions [2], leading to models with good performance when the
test and training data are similar, but which perform poorly when applied to
a system working in a more natural environment. Moreover, differences in data
collection and annotation style make it difficult to compare results across studies.

To address these issues, recent studies have focused on recognizing emotions
in more realistic dialogues while shared tasks such as the annual Audio/Visual
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Emotion Challenge (AVEC) have been held with the goal of comparing dif-
ferent approaches on common datasets of spontaneous speech. Despite these
steps forward, the performance of existing multimodal emotion recognition mod-
els leaves much room for improvement. Predicted values from the top com-
petitors in AVEC2012 [3], for example, exhibit relatively weak correlations for
both the frame and word level subchallenges. As a regression task, the average
correlation-coefficients over all test sessions for the best Fully-Continuous Sub-
Challenge (FCSC) model [4] and the best Word-Level Sub-Challenge (WLSC)
model [5] are 0.456 and 0.280 respectively, i.e., weak to moderate correlations. A
possible reason for this poor performance is that the lexical, acoustic, and visual
features often examined in these tasks are too low-level to predict emotions.

In this paper, we investigate the predictiveness of high-level features in the
word-level emotion recognition task. These features include six disfluency fea-
tures and locations of facial landmarks. We extracted our features from the
AVEC2012 database and compared the predictiveness of our high-level features
with that of the conventional lower-level audio and visual features used by the
AVEC2012 WLSC baseline models. These include spectral and prosodic (SP)
features and Local Binary Patterns (LBP) [6]. We compare our models to the
corresponding AVEC2012 WLSC baseline models, as well as the three best per-
forming models from the AVEC2012 WLSC. We find that our high-level features
are more predictive than the low-level features, and the performance of our best
bimodal model is competitive with the highest scoring models from the AVEC
challenge, while using at most 22 features.

1.1 Background

Previous approaches to emotion prediction based on the AVEC data work with
a high dimensional space of low-level features (1842 SP features and 5908 LBP
features in the baseline model). However, the results from the top performing
WLSC model [5] show that significant gains can be made by including lexical
features. In this paper, we investigate whether other higher level features can be
used to reduce feature space dimensionality and improve performance for this
task.

Studies of both human cognition [7] and natural language processing [8] sug-
gest that disfluencies are powerful clues for recognizing the emotional states of
a speaker. Thus, disfluency features may have a stronger relationship with emo-
tions than SP features or more general lexical features extracted from content
words, and may contain less noise. Therefore, we conjecture that a unimodal
emotion recognition model using disfluency features will outperform models us-
ing SP features or more general lexical features, and may contain less noise.
Therefore, we conjecture that a unimodal emotion recognition model using dis-
fluency features will outperform models using SP features or more general lexical
features.

Both the best [4] and the second best [9] performing FCSCmodels of AVEC2012
chose high-level visual features that describe the facial expressions of the speaker
using positions of facial landmark points, instead of the LBP features that describe
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the orientation of pixels. Their results suggest that high-level visual features may
also improve performance when recognizing emotions at word level.

Studies in cognitive science [10] and affective computing [11] show that the
audio and visual modalities have different strengths and weaknesses when pre-
dicting different emotion dimensions. Therefore, combining the modalities should
lead to improved performance, at least compared to the lower performing modal-
ity. We also expect to see better performance by combining our high-level features
as opposed to combining low-level features.

However, differences in performance may arise depending on how the modal-
ities are combined. For example, the bimodal model of Savran et al. [5] uses
Decision-Level (DL) fusion, in which unimodal models are built separately and
their individual predictions are then combined. This bimodal model outperforms
both unimodal models. However, the WLSC baseline model [3] uses Feature-
Level (FL) fusion, in which the audio and visual features are concatenated and
a single classifier is built from this combined feature set. This bimodal model
only outperforms the worse performing unimodal model (the visual model). This
suggests that applying feature engineering methods (e.g., Principal Components
Analysis (PCA) and Correlation-based Feature-subset Selection (CFS)), to the
concatenated feature set may improve the performance of the bimodal model by
reducing the drawbacks of the less predictive features and increasing the benefits
given by the more predictive features.

To sum up, in this work, we test the following three hypotheses:

1. Using high-level features will improve the performance of emotion recognition
compared to using low-level features.

2. Fusing modalities by concatenating feature sets will give better results com-
pared to unimodal models.

3. Applying feature engineering to the concatenated feature set will improve
performance of the bimodal model.

The rest of this paper is organised as follows: In Section 2, we introduce the
AVEC2012 database and our experimental setup. Section 3 presents the results
of regression experiments using different feature sets. Section 4 provides general
discussion and future directions for our work. Section 5 contains the conclusions.

2 Method

2.1 The AVEC2012 Challenge

The Database and Its Definition of Emotions

We use the AVEC2012 database [3] in the following experiments. It includes
audio-visual recordings and manual transcriptions with word timings of 24 sub-
jects conversing with 4 virtual agents, which were collected as part of the SE-
MAINE corpus [12]. Each agent is designed with a different personality, namely
even-tempered Prudence, happy Poppy, angry Spike, and depressive Obadiah.
Conversations were conducted in a Wizard-of-OZ setup. Topics of conversation
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varied from daily life to political issues. The 24x4 recordings are divided into
training set, development set, and test set, each of which contains 32 dialogue
sessions. In the AVEC database, subjects in the test set are different people from
those in the training and development sets. For the WLSC, each word spoken by
a subject is a data instance. The number of instances contained in the training
set, development set, and test set are 20169, 16300, and 13405, respectively.

The AVEC2012 database uses real-value vectors in the Arousal-Expectancy-
Power-Valence (AEPV) space to represent emotions. Arousal represents the ac-
tiveness of the subject; Expectancy represents the predictiveness the subject feels
towards the conversation; Power represents the degree of dominance the subject
feels over the conversation; Valence represents the positiveness the subject feels
towards the conversation [13]. For example, using this representation, we may
describe the emotional state of someone who has just been informed that she has
won the best paper award as a = (0.6, -0.3, -0.1, 0.9), which means she is excited
(A = 0.6) about this great (V = 0.9) news, and cannot stop herself (P = -0.1)
from jumping up and down at this surprise (E = -0.3). The AEPV emotional
space is capable of describing most of our everyday emotions [13]. The original
emotion annotations in the AVEC2012 database had different value ranges for
the four dimensions. In our work, we rescale all the AEPV values into the range
[-1, 1].

Baseline Audio and Visual Features Provided by the Challenge

The AVEC2012 baseline SP feature set provides 1842 audio features, including
pitch, energy, voicing, spectral related low-level descriptors, and voiced/unvoiced
duration features, which were extracted from the users’ speech using OpenS-
MILE [14] over words.

The AVEC2012 baseline LBP feature set provides 5908 features related to
the size and position of the facial regions, as well as LBP descriptors. Faces in
frames are detected using OpenCV’s Viola and Jones face detector [15], then
aligned by eye locations.

The Best Performing WLSC Model

The model that won the 2012 WLSC, proposed by Savran et al. [5], uses a
subset of the baseline audio and visual features, together with lexical features
they extracted from the transcripts provided.

Their lexical features were computed using Pointwise Mutual Information
(PMI) values, which are measurements of the correlations between words and
binarized emotion dimensions. They extracted two types of lexical features, i.e.,
sparse PMI features using a 1000-dimension bag-of-words approach, and non-
sparse PMI features using word counts. These were the only lexical features
used in the AVEC2012. Their experiments showed that the sparse PMI features
gave significantly better results than the non-sparse PMI features, and were the
most predictive features. Since our disfluency features are also extracted from
the transcripts, performance of our disfluency feature model will be compared
to their lexical model.
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2.2 Disfluency Features

In our work, we extract 6 novel disfluency features from the manual transcripts
and word-timings provided by the challenge. Each of our disfluency features
describes one type of disfluency as described in the following list:

1. Filled pauses: non-lexical sounds people make when speaking. For example,
“Hmm” in the utterance “Hmm... Maybe we should try another road.” The
three most common filled pause words in the AVEC database are “em”,
“eh”, and “oh”.

2. Fillers: phrases used by speakers when they pause to think but they still
want to hold the turn. For example, “you know” in the utterance “I just want
to, you know, get a drink and forget all about it.”. The three most common
fillers in the AVEC database are “well”, “you know”, and “I mean”.

3. Stutters: words or parts of words the speaker involuntarily repeats when
speaking. For example, “Sa” in the utterance “Sa Saturday will be fine.”, or
the first “I didn’t” in the utterance “I didn’t, I didn’t mean it.”

4. Laughter: sounds labelled as 〈LAUGH〉 in the transcripts provided with
the AVEC challenge.

5. Breath: sounds labelled as 〈BREATH〉 in the transcripts.
6. Sigh: sounds labelled as 〈SIGH〉 in the transcripts.

We note that this is only a subset of the types of disfluencies that are stud-
ied in natural language. For example, content based repairs (“I went hiking on
Saturday...no, Sunday.”) were not annotated. We choose to use these 6 types
because they are the most common disfluencies occurring in the corpus and they
are relatively easy to detect from transcripts alone.

Filled pauses, fillers, and stutters were detected semi-automatically: we first
ran a keyword search for known disfluency words on the transcripts, then man-
ually checked the annotation results to reduce mistakes such as annotating the
“well” in “It works well” as a filler. For laughter, breath, and sighs, we use the an-
notations provided by the challenge, which were manually labelled. In this paper,
we use the manually corrected “gold standard” disfluency features to establish
whether our disfluency features are good predictors for emotion recognition. If
so, we plan to develop methods to detect disfluencies fully automatically.

To calculate the disfluency features, we used a moving window, which contains
the target word and its 14 preceding words, as shown in Figure 1. Our window
works on dialogue sessions, and it slides word by word, until it reaches the end of
a session. The window for wn contains wn−14 to wn when n > 15. When n ≤ 15,
a window that contains w1 to w15 is used. We chose a window length of 15 words
because this is the average length of a speaker turn, and the emotional states of
the words within a speaker turn are often highly correlated.

We compute our disfluency features using equation (1):

Di =
td
Ti

(1)

Here, Di is the disfluency feature D of the i-th word; td is the total duration of
disfluency type D within the window of this word; Ti is the total utterance length
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Fig. 1. The moving window

of all 15 words within this window. The reason we use durations of disfluencies
instead of their counts is that duration of disfluency features also contains clues
for emotions, e.g., saying “Hmm. . . ” (longer duration) may indicate that the
speaker feels more uncertain than saying “Hmm” (shorter duration).

One issue with our disfluency features is that some types of disfluency are
very infrequent in the data. The percentages of non-zero values of our disfluency
features are shown in Table 1 (before speaker normalization is applied). We can
see that some types of disfluency are very sparse, with non-zero values occurring
less than 10% of the time. However, these infrequent disfluency features may
also contribute to emotion recognition by indicating where the also infrequent
periods of strong emotions are located. This may help to predict the emotional
values of time periods that are highly emotional, as well as those of time periods
that are calm and neutral.

Table 1. Frequency of non-zero values of our disfluency features

Data set Filled Pause Filler Stutter Laughter Breath Sigh

train(%) 45.1 16.0 12.2 8.2 2.9 0.6
devel(%) 37.3 20.7 12.0 10.7 1.5 0.5
tests(%) 34.2 20.9 12.4 9.6 3.0 0.1

We examined two additional types of features: silent pause features, which are
calculated by finding silent gaps between word timings, and window-based PMI
features. However, our experiments showed that these features are not as pre-
dictive as our disfluency features. Therefore, these features and the experiments
related to them will not be further discussed in this paper.

2.3 The ASM Visual Features

In our work, we use the horizontal and vertical positions of 77 facial landmarks as
our visual features. The face detection and eye alignment procedure is similar to
that employed in the AVEC2012 baseline visual feature extraction. To locate the
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facial landmarks on detected facial regions, the Active Shape Model (ASM) [16]
is used. In ASM, a model for the shape of an object is first constructed from the
training samples based on the geometric features calculated using PCA. This
model is then applied to the test sample and iteratively fit to it. The reason we
chose ASM instead of the Active Appearance Model (AAM) used by the best [4]
and the second best [9] FCSC models, is that, in general, ASM works better
than AAM when the test subjects are different from the training subjects [17].
In our case, we used an existing face model that is trained on the MUCT Face
Database [18], so ASM is a more reasonable choice here.

The STASM (ASM with SIFT descriptors) tool [19] was used to automatically
locate facial landmarks. Horizontal and vertical locations of these points are
shown in Figure 2. This gives us a 154-dimension vector representing the facial
expressions in each frame. We then compute a mean representation over all the
frames within the duration of a word. The same moving window used in the
disfluency feature extraction is applied again and the mean representation of
each word within the window is concatenated. This leads to our ASM visual
feature set of 2310 (154x15) features.

2.4 Speaker Normalization

We applied z-score speaker normalization to all our features to reduce the influ-
ence of speaker variance, as follows.

V
′
a =

Va − V̄a

Stda
(2)

V
′
a is the normalized value of an attribute a; Va is the original value of attribute

a; V̄a is the mean value of attribute a over all the samples extracted from the
speaker; Stda is the standard deviation of values of attribute a. Speaker normal-
ization is applied after grouping the data by speaker.

2.5 Modality Fusion and Feature Engineering

In our work, we applied a FL modality fusion method and concatenated our dis-
fluency and ASM visual feature sets into one set. Simple concatenation without
any further feature engineering is referred to as Basic-FL in the following. The
feature set used by our Basic-FL model contains 2316 features.

We also study the influence of two feature engineering methods on the Basic-
FL model. The first method is PCA, which maps the original features to a
lower dimensional space, thus reducing the size and redundancy of the feature
set. After reserving 99% of the total variance, the new feature set contains 59
transformed features.

The second method is CFS [21], which ranks features based on their predic-
tiveness and correlation with other features. The predictiveness of features is
evaluated by building single feature classifiers. Features with the best perfor-
mance and low redundancy are iteratively added to our starting set containing



24 J.D. Moore, L. Tian, and C. Lai

Fig. 2. Locations of 77 facial landmarks [20]

the 6 disfluency features, until the performance decreases. The CFS-FL model
uses different feature sets when predicting different emotion dimensions, and
there are at most 22 features (for Valence) in these subsets. The variance in the
number and features contained in the subsets for predicting different emotion
dimension also highlights the varying relationship between features and these
dimensions.

Taking a closer look at the feature set selected and referring to the annotations
of facial landmarks shown in Figure 2, we also find that the small number of
visual features selected by the CFS method often represents facial expression
changes within the moving window. For example, the 8 visual features selected
when predicting Arousal values are w1y21, w3y22, w5y21, w7y21, w9x24, w10y22,
w12y22, w15y21. Here, wi represents the i-th word in the window. We use wixj

and wiyj to represent the averaged horizontal and vertical positions of the facial
landmark numbered at j during word wi. In Figure 2, we can see that the facial
landmarks No.21 and No.22 are the inner corners of eyebrows. This subset of
visual features mainly describes the vertical movements of these two key facial
points within our window. Other important facial landmarks are also labelled
in Figure 2. Those marked by circles indicate that the vertical movement of
this point is used, and those marked by squares indicate that the horizontal
movement is used.
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2.6 Regression and Evaluation Metric

We use Support Vector Regression (SVR [22]) as our regression method for com-
parability with the AVEC2012 baseline and top performing models. Following
the settings of the best WLSC model [5], we implemented epsilon-SVR with a
linear kernel using the LibSVM [23] toolbox on the WEKA [24] interface. Before
regression begins, all features are normalized to range [0, 1] in the regression
models. The AEPV values are predicted independently. We use training, devel-
opment, and test sets as set out by the AVEC guidelines.

In the AVEC2012 challenge, Cross-Correlation Score (CCS), which is the aver-
age of correlation-coefficients of all 32 test sessions, was defined as the evaluation
metric. The value range of CCS is from 0 to 1, with higher scores representing
better performance. In this paper, we evaluate significance of differences between
CCS scores using a two-tailed z-test after Fisher’s r-to-z transformation.

3 Experiments and Results

Results of our experiments are shown in Table 2. In Table 2, DF is our disfluency
feature model; PMI is the sparse PMI feature model used by Savran et al. [5];
SP is the AVEC2012 WLSC baseline audio model using SP features; ASM is our
ASM visual feature model; R-LBP is the dimensionality-reduced LBP model
used by Savran et al. [5]; LBP is the AVEC2012 WLSC baseline visual model
using LBP features; B-FL, P-FL, C-FL are our Basic-FL, PCA-FL, CFS-FL
bimodal models; AV-B, AV-1, AV-2, AV-3 are the AVEC2012 WLSC baseline,
the best [5], the second best [25], and the third best [26] audio-visual (AV)
models.

3.1 The Disfluency Feature Model

As shown in Table 2, compared to all the other unimodal models, our disfluency
feature model has the best performance when predicting all four emotion dimen-
sions. Its overall performance is not significantly different from the best result
of WLSC (p = 0.424).

As shown in Figure 3, our disfluency feature model outperforms the baseline
model using SP features. Comparing our disfluency features with the PMI-based
lexical features used by Savran et al. [5], our features look at data from a higher
level, and give significantly better performance when predicting all emotion di-
mensions. This is consistent with our hypothesis that using high-level features
will improve model performance.

Note that we only have 6 disfluency features, while there are 1842 SP features
and 1000 PMI features. This huge difference in dimensionality will influence
the efficiency of the emotion recognizer greatly, and lower dimensional features
are often preferred, especially in real-time interactive systems. Therefore, our
high-level disfluency features are more predictive and more efficient.

We also compared the predictiveness of different types of disfluency using
the rank generated by the CFS method (see Section 2.5). Results are shown in
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Table 2. Experimental results

Models A E P V Mean

DF 0.250 0.313 0.288 0.235 0.271
PMI 0.131 0.285 0.254 0.188 0.214
SP 0.014 0.038 0.016 0.040 0.027

ASM 0.205 0.246 0.172 0.219 0.211
R-LBP 0.184 0.156 0.146 0.226 0.178
LBP 0.005 0.012 0.018 0.005 0.011

B-FL 0.205 0.274 0.223 0.207 0.227
P-FL 0.214 0.268 0.269 0.225 0.244
C-FL 0.274 0.258 0.266 0.215 0.253

AV-B 0.021 0.028 0.009 0.004 0.015
AV-1 0.302 0.194 0.293 0.331 0.280
AV-2 0.210 0.240 0.289 0.208 0.237
AV-3 0.267 0.241 0.223 0.138 0.192

Fig. 3. The disfluency feature model

Table 3. The rank of a disfluency feature when predicting a particular emotion
dimension is from 1.0 to 6.0, with 1.0 representing the highest predictiveness. The
results indicate that filled pauses and laughter are the most predictive disfluency
features in this task.

3.2 The ASM Visual Feature Model

As seen in Figure 4, for all four emotion dimensions our high-level ASM visual
features are more predictive than the pixel-level LBP features extracted from the
whole facial region. Our model also outperformed the feature-selected LBP model
on most of the emotion dimensions. On the Valence dimension, our model has
slightly lower CCS, but the difference is not significant (p = 0.549). These results
verified our hypothesis that our high-level ASM features are more predictive then
the low-level LBP features.
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Table 3. Predictiveness rank of different disfluency features

Disfluency A E P V mean

Filled pause 1.0 2.0 1.0 2.0 1.5
Filler 6.0 5.0 5.0 6.0 5.5
Stutter 5.0 6.0 6.0 3.0 5.0
Laughter 2.0 1.0 2.0 1.0 1.5
Breath 4.0 3.0 4.0 5.0 4.0
Sigh 3.0 4.0 3.0 4.0 3.5

Fig. 4. The ASM visual feature model

3.3 The Bimodal Models

The performance of our unimodal models (DF and ASM) and our bimodal mod-
els (B-FL, P-FL, and C-FL) is shown in Figure 5. As we can see, our disfluency
feature model outperforms our ASM visual model on all emotion dimensions.
After simple concatenation of the feature sets, the increase on mean CCS of the
lower-performing visual modality is not significant (p = 0.168). Recall that there
are only 6 disfluency features, while there are 2310 ASM visual features. This
suggests that the large visual feature set is dominating and introduces noise into
the model. We can see that the PCA-FL model and the CFS-FL model perform
better than the Basic-FL model in general, thus applying feature engineering to
the concatenated feature set helps to reduce the influence of noisy visual features.
These two feature-engineered bimodal models both give significant improvements
on mean CCS compared to the lower-performing visual model. However, com-
pared to the Basic-FL model, only CFS gives significant improvement on mean
CCS (p = 0.024).

We also compared our best bimodal model, the CFS-FL model, with the base-
line and the best three models of AVEC2012 WLSC. As shown in Figure 6, per-
formance of our bimodal model is significantly better than the AVEC2012WLSC
baseline model when predicting all four dimensions of emotions, as expected.
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Fig. 5. Modality fusion and feature engineering

Comparing the overall performance (mean CCS), our model is significantly bet-
ter than the third best WLSC model [26]. Our model also outperformed the
second best WLSC model [25], but the difference is not significant (p = 0.165).
When predicting Expectancy values, our model gives the highest CCS. The rea-
son may be that Expectancy is the easiest dimension to predict for both our
disfluency and ASM features, as shown in Figures 3 and 4.

Fig. 6. Comparing our bimodal model with the AVEC2012 WLSC results

4 Discussion

Based on the experimental results, we verified our main hypothesis that using
high-level features, namely the disfluency features and the ASM features, im-
proves model performance compared to using low-level features.

The average performance of our disfluency model using only the 6 disflu-
ency features is not significantly different from the best audio-visual model in
AVEC2012 WLSC. This indicates that disfluency features are especially pow-
erful in emotion prediction. Our disfluency model also outperformed the PMI
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model used by Savran et al. [5]. This suggests that learning other high level
classes of lexical features may be useful for this task.

In the future, we plan to study whether the disfluency features are still highly
predictive of emotion when using other corpora. The utility of disfluencies also
depends on how well they can be detected. Further work will investigate per-
formance using disfluencies detected from the output of an automatic speech
recognizer, rather than manual transcription. Similarly, integrating work on de-
veloping a fully automatic disfluency detection method based on existing studies
should be helpful for this task. For example, Liu et al [27] use a Hidden-Markov
Model that combines textual and prosodic clues to detect disfluencies. The work
of Niewiadomski et al. [28] also highlights the importance of automatic laughter
detection.

The visual feature subset selected by the CFS method illustrates a way to
compute visual features that also have longer duration. In the future, we will
use the position changes of a subset of the 77 facial landmarks over the window
as visual features, thus further reducing the dimensionality of the visual feature
set.

Our experimental results also verify that fusing modalities can give improve-
ments compared to the lower-performing unimodal model. However, it is difficult
for FL fusion models to improve on the better-performing unimodal model. The
fact that feature-engineered models do not provide huge gains may be due to a
lack of control in feature weighting and, as such, DL fusion may be more appro-
priate for the task. Compared to FL fusion, DL fusion has the natural advantage
of flexibility when weighting different modalities. In the future, we plan to apply
DL fusion to our model and study whether or not it improves performance.

Finally, the low CCS of all models in the AVEC2012 may indicate that CCS is
not the best evaluation metric for this task. CCS evaluates average performance
of the classifier for predicting values of all data in the corpus. However, occur-
rences of strong emotions are relatively rare in conversations, which makes the
values of a large portion of the data unsuitable for classifiers that are designed
to predict such emotions. Therefore, a more appropriate evaluation metric is
needed. One possible alternative would be to detect emotionally strong events
first, using methods such as those previously used for the detection of hot spots
in meetings [29], and only evaluate model performance on these segments.

5 Conclusions

In this paper, we introduced a new emotion recognition approach that used a
small number of human-interpretable high-level features. Our unimodal and bi-
modal models built using these features have significantly better performance
compared to the baseline models, which used a large number of low-level au-
dio, visual, or lexical features. In fact, our models have the best performance
for predicting the Expectancy dimension of emotion compared to all AVEC2012
competitors. Using only 6 disfluency features, we built a model with performance
not significantly different from the best AVEC2012 bimodal model overall. Pre-
vious studies on automatic disfluency detection also give us reason to believe
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that these features can be computed automatically in real or near-real time
with reasonable accuracy. This in turn would allow the development of a fast
and accurate emotion classifier which holds promise for future applications in
interactive systems.
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