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ABSTRACT

Distant conversational speech recognition is challenging ow-
ing to the presence of multiple, overlapping talkers, additional
non-speech acoustic sources, and the effects of reverberation.
In this paper we review work on distant speech recognition,
with an emphasis on approaches which combine multichan-
nel signal processing with acoustic modelling, and investi-
gate the use of hybrid neural network / hidden Markov model
acoustic models for distant speech recognition of meetings
recorded using microphone arrays. In particular we investi-
gate the use of convolutional and fully-connected neural net-
works with different activation functions (sigmoid, rectified
linear, and maxout). We performed experiments on the AMI
and ICSI meeting corpora, with results indicating that neu-
ral network models are capable of significant improvements
in accuracy compared with discriminatively trained Gaussian
mixture models.

Index Terms— convolutional neural networks, distant
speech recognition, rectifier unit, maxout networks, beam-
forming, meetings, AMI corpus, ICSI corpus

1. INTRODUCTION

Distant conversational speech recognition [1] is highly chal-
lenging for several reasons. A typical recording may include
multiple overlapping talkers, as well as additional non-speech
acoustic sources, and the recording environment may have
significant reverberation. During the 1990s a number of pi-
oneering studies investigated the development of DSR sys-
tems based on a microphone array (e.g. [2, 3, 4]), and an
evaluation framework for speech recognition based on mul-
tichannel recordings of Wall Street Journal sentences [5] has
enabled some comparability in this area. In practice, the effect
of speaker and channel adaptation has been found to have a
much greater effect on speech recognition word error rates,
compared with changes to the beamforming algorithm and
postfilter [6]. On the other hand, a number of techniques have
been developed to address specific challenges such as rever-
beration and overlapping talkers [7, 8].

This research was supported by EPSRC Programme Grant grant, no.
EP/I031022/1 (Natural Speech Technology).

Over the past decade, there has been an increased fo-
cus on the recognition of multiparty conversational speech.
Much of the work has been in meeting transcription: the ICSI
Meeting Project resulted in the first major corpus in the area.
The ICSI Meeting Corpus [9] used individual headmounted
microphones (IHM), as well as 4 boundary microphones
placed about 1m apart along the tabletop. One limitation of
this corpus was the fact that the distant microphones were
widely spaced and not in known postions. Subsequently, the
AMI meeting corpus [10] was recorded using one or two
8-element circular microphone arrays, in addition to head-
set and lapel microphones. From 2004–2009, the NIST RT
evaluations focused on the problem of meeting transcription,
and enabled comparison between various automatic meet-
ing transcription systems (e.g. [11, 12]), in the IHM, SDM
(single distant microphone), and MDM (multiple distant mi-
crophone) cases. In the MDM systems, the microphone array
processing part was usually distinct from the speech recogni-
tion part. For instance, the AMIDA MDM system of Hain et
al [12] processed the multi-channel microphone array data us-
ing a Wiener noise filter, followed by beamforming based on
time-delay-of-arrival (TDOA) estimates, postprocessed using
a Viterbi smoother. In practice the beamformer tracked the
direction of maximum energy, passing the beamformed signal
onto a conventional ASR system – in the case of [12], a Gaus-
sian mixture model / hidden Markov model (GMM/HMM)
trained using the discriminative minimum phone error (MPE)
criterion [13], speaker adaptive training [14], and the use
of bottleneck features [15] derived from a neural network
trained as a phone classifier. The resulting system employed
a complex multi-pass decoding scheme, including substantial
cross-adaptation and model combination.

Seltzer [16] has argued that the above approach, which
may be viewed as using a speech enhancement framework
for microphone array processing, is sub-optimal and that
it would be preferable to optimise all system components
using a common objective function related to the overall
task, i.e. minimising the speech recognition word error
rate (WER). LIMABEAM [17, 18] is an example of such
an approach, in which the parameters of the microphone
array beamformer are estimated so as to maximise the like-
lihood of the correct utterance model. Marino and Hain [19]
explored removing the beamforming component entirely,



and driving an HMM/GMM system with concatenated fea-
ture vectors from the different microphones. Whereas the
LIMABEAM approach retains explicit beamforming param-
eters, but optimises them according to a criterion related
to speech recognition accuracy, the concatenated approach
makes the beamforming parameters implicit.

Building on [18, 19], our goal in this paper is to explore
ways in which deep neural networks can learn suitable repre-
sentations for distant speech recognition based on multichan-
nel input. Deep neural network (DNN) acoustic models [20]
now define the state-of-the-art in acoustic modelling for au-
tomatic speech recognition (ASR), typically using a hybrid
configuration [21, 22, 23, 24, 25, 26] in which the neural net-
work is used to estimate HMM output probabilities. We have
recently demonstrated that hybrid neural network systems can
significantly increase the accuracy of distant conversational
speech recognition [27], by conducting experiments using the
AMI corpus. A benefit of using neural network acoustic mod-
els is the possibility to use frequency domain feature vectors
with no extra cost (unlike GMM-based systems which require
a full covariance model); experiments indicate that log spec-
tral domain features result in a small, but consistent, reduction
in WER over cepstral domain features [28].

This paper extends our previous work to the ICSI corpus,
and investigates the use of piecewise-linear activation func-
tions which have shown promise for clean speech recognition
[29, 30, 31, 32]. By producing highly sparse hidden activa-
tions, we believe that some of these activation functions are
well suited to distant speech recognition. In each case we
also experiment with convolutional layers [33] and their re-
cent variant for modelling speech by convolution and pooling
along frequency [34].

2. CONVOLUTIONAL NEURAL NETWORKS

A fully-connected feed-forward neural network implements
a cascade of L − 1 non-linear transformations in which the
l-th layer computes hl = f

(
Wlhl−1 + bl

)
. Wl ∈ RA×B

and bl ∈ RB are a trainable matrix of connection weights
between two consecutive layers and vector of additive biases,
respectively. The activation function f(·) applies some non-
linearity to the hidden units. The topmost L-th layer esti-
mates posterior probability of a tied context-dependent pho-
netic HMM state s given an observation vector ot at time
t: P (s|ot) = exp(a{s})/

∑
s′ exp(a{s′}), where a{s} =

wL
s h

L−1 + bLs is a linear activation at the s-th output of the
top layer.

This architecture may be enriched by constraining one
or more of the lower layers to have local connectivity and
to share parameters – such a model is referred to as a Con-
volutional Neural Network (CNN). CNNs have defined the
state of the art on many vision tasks [35] and recently have
been found to reduce the speech recognition word error rate
(WER) when applied to acoustic modelling [34, 36]. The

major conceptual difference between recent CNN structures
for speech modelling and previous trials in the form of both
CNNs [35] and the closely-related time-delay neural net-
works [37] lies in performing convolution and/or sharing
parameters across frequency rather than time.

The input to a CNN comprises of (log) mel-spectral fea-
tures within an acoustic context window V ∈ RB×Z re-
ordered in a way such that each of B frequency bands con-
tain all the Z related coefficients (statics and dynamics). The
hidden activations are then generated by a linear valid con-
volution of a local frequency region, i.e. [v1,v2,v3] with J
weight vectors (filters), w1...J . The same set of filters is then
applied across different frequency regions to form a complete
set of convolutional activations which can be subsampled, for
instance by using the maxpooling operator [33], to further
limit the variability across different frequencies.

The most frequent choice for the hidden layer acti-
vation function f(·) until recently was sigmoid f(x) =
1/(1 + exp(−x)), or the closely related tanh(x). The reason
for this is that smooth and continuously differentiable non-
linearities were considered to be a crucial component of train-
ing DNNs, allowing for a smooth flow of back-propagated
gradients and the discovery of highly non-linear features.
However, it has been shown experimentally that semi-hard
functions which break many of these conventional design
mainstays can be not only very accurate but also easy and fast
to learn. An example of such activation functions are rectified
linear units (ReLU) [38] implementing the lower bounded
operation f(x) = max(0, x) and maxout units [39] comput-
ing f(xi . . . xi+K) = maxi+K

j=i xj over a group of K units.
Unbounded piece-wise linear activation functions prevent the
network from saturating and mitigate the vanishing gradients
problem in deeper networks.

Stochastic gradient descent training is carried out by min-
imising a negative log posterior probability cost function
L(θ) = −

∑T
t=1 logP (st|ot; θ), over the set of training ex-

amples O = {o1, . . . ,oT }; where st is the most likely state
at time t obtained by a forced-alignment of the acoustics with
the transcript, and θ = {W1, . . . ,WL,b1, . . . ,bL} is the set
of parameters of the network. Decoding is carried out using
scaled log-likelihoods log p(ot|s) ∝ logP (s|ot)− logP (s),
where P (s) is a prior probability of state s calculated from
training data.

3. EXPERIMENTAL SETUP

We have performed experiments using the AMI1 [10] and
ICSI2 [9] meeting corpora. We used training and test split de-
fined in the 100h AMI corpus release, as in our previous work
[27, 40]. In the 72h ICSI corpus we used 5 complete meetings
for testing and defined dev and eval sets3. For simplicity

1http://corpus.amiproject.org
2http://catalog.ldc.upenn.edu/LDC2004S02
3dev {Bmr021 and Bns001}, eval {Bmr013, Bmr018 and Bro021}



of exposition, we report results using all segments, including
those with simultaneous speakers. The WERs from scoring
non-overlapped segments only are around 10-12% absolute
lower for both AMI and ICSI corpora4, and results using this
scoring can be found in [40].

We used a 50,000 word pronunciation dictionary [12].
For the AMI experiments we used the language model (LM)
described in [27] which was built using both in-domain AMI
training transcripts (0.8M words) as well as Fisher (22M
words) and Switchboard (3M words) text data. For the ICSI
experiments we further interpolate the AMI LM with in-
domain 3-gram LM estimated from ICSI training transcripts.
The AMI LM gives a perplexity of 78 on the AMI dev set;
the ICSI LM gives perplexity of 110 on ICSI dev set.

All neural networks were trained using 40-dimensional
log Mel filterbank (FBANK) features appended with the first
and the second time derivatives [28]. Our distant microphone
systems within this work remain unadapted to both speakers
and sessions. Based on previous experiments, DNNs with sig-
moid or ReLU hidden unit activation functions had 6 hidden
layers with 2048 hidden units per layer. Maxout networks
were tuned to have a similar number of parameters with six
hidden layers, resulting in 1150 maxout units and a group
size K = 3. Convolutional layers were configured to have
J = 128 filters. Experiments were performed using the Kaldi
speech recognition toolkit [42], and the pylearn2 machine
learning library [43].

For each neural network we sample initial weights from
a uniform distribution with range ±r. For the ReLU and
maxout models we use r = 0.005, while the sigmoid net-
works make use of a normalised initialisation with r =
4
√
6/(nl + nl+1), where nl denotes the input dimension-

ality of the l-th layer [44]. All models are finetuned with
the exponentially decaying “newbob” learning rate schedule5

staring from an initial learning rate of 0.08 (for sigmoids)
and 0.01 for piece-wise linear activations. We have not used
unsupervised pre-training [45] in these experiments. Al-
though pretraining can be beneficial we have observed its
effect to lessen as the amount of training data increases. Re-
stricted Boltzmann machine [45] pretraining is well-matched
to sigmoid activation functions, and can also be used for
convolutional layers [46]. For activation functions such as
ReLUs and maxout it would be possible to used stacked au-
toencoder pretraining [47] which is not limited to a specific
form of activation function.

Our aim in developing these experimental setups is to en-
able our experiments to be reproducible by other researchers
by using readlily available data for acosutic and language
model training.

4We use asclite tool for scoring overlapped speech [41] following
the NIST RT recommendations (http://nist.gov/speech/tests/
rt/2009). Scoring for non-overlapped segments only is obtained by using
asclite with the -overlap-limit 1 option.

5Developed as part of ICSI QuickNet: http://www.icsi.
berkeley.edu/Speech/qn.html

Table 1. WER (%) on AMI and ICSI – SDM.

System AMI ICSI
BMMI GMM-HMM (LDA+STC) 63.2 56.1
DNN – Sigmoid 53.1 47.8
DNN – ReLU 51.1 46.3
DNN - Maxout 50.8 45.9
CNN – Sigmoid 51.3 46.5
CNN – ReLU 50.3 45.6
CNN – Maxout 50.5 -

4. RESULTS

In this section we report on speech recognition experiments
using the AMI and ICSI corpora, with two distant speech con-
ditions (SDM and MDM) and one close-talking speech con-
dition (IHM). We have three baseline acoustic models:
• a GMM-based system, discriminatively trained using

boosted maximum mutual information (BMMI) [48],
with mel-frequency cepstral coefficient (MFCC) fea-
tures post-processed with linear discriminant analysis
(LDA) and decorrelated using a semi-tied covariance
(STC) transform [49];
• a DNN using 6 hidden layers, with sigmoid activation

functions, using 40-dimension log mel spectral features
(plus 1st and 2nd derivatives)[27];
• a deep CNN comprising one convolutional layer with

128 filters, followed by 5 fully-connected layers, using
the same acoustic features as the DNN [40].

Results for AMI are on the dev set (for comparability with
[27, 40]), results for ICSI are on the eval set.

4.1. SDM – Single Distant Microphone

The SDM experiments used the first microphone from the
AMI circular array and the second tabletop boundary micro-
phone from the ICSI recordings. Our results are shown in
Table 1, with the three baseline systems in line 1 (BMMI
GMM), line 2 (DNN – Sigmoid), and line 5 (CNN-Sigmoid).
The DNN baseline has a 15% relative lower WER than the
discriminative GMM baseline, with the CNN baseline im-
proving over the DNN baseline by a further 3% relative.
Comparing the ReLU and Maxout DNN and CNN systems,
with the sigmoid baselines, shows a consistent improvement
in WER of 1.5–4.5%. Comparing DNNs and CNNs with the
same activation function, we see that networks with the sig-
moid nonlinearity benefit the most from a convolutional layer
(3–4% relative reduction in WER), although the ReLU and
Maxout systems do benefit from the use of a convolutional
layer (0.5–2% relative). We note that these experiments have
been performed with a fixed number of filters, optimised for
sigmoid-based systems; further experiments are needed to
ascertain if the ReLU and Maxout systems would give large
decreases in WER if there were more convolutional filters.



Table 2. WER (%) on AMI and ICSI – MDM with beamforming

System AMI ICSI
BMMI GMM-HMM (LDA+STC) 54.8 46.8
DNN – Sigmoid 49.5 41.0
DNN – ReLU 46.3 38.7
DNN – Maxout 46.4 39.0
CNN – Sigmoid 46.3 39.5
CNN – ReLU 46.0 37.6
CNN – Maxout 45.9 38.1

Table 3. WER (%) on AMI – MDM with multi-channel input

System AMI ICSI
CNN – Sigmoid (conventional) 50.4 43.3
CNN – Sigmoid (channel-wise) 49.5 40.1
CNN – ReLU (channel-wise) 48.7 37.5
CNN – Maxout (channel-wise) 48.4 37.8

4.2. MDM – Multiple Distant Microphones

For the MDM systems we consider: (1) beamforming the sig-
nal into a single channel (using all 8 microphones for AMI
and 4 tabletop boundary microphones for ICSI) and following
the standard acoustic modelling approaches used for the SDM
case [27]; (2) cross-channel pooling using a channel-wise
convolutional layer for training on multiple microphone chan-
nels, in which the hidden activations are constructed from the
maximum activations across the channels. The ICSI data is
characterised by large distances between microphones, and
picking the right microphone for a talker is crucial, which
may be well-matched to cross-channel pooling.

Table 2 shows the results for the models trained on a
single beamformed channel (using BeamformIt [50]). We
observe similar reductions in WER for sigmoid CNNs over
DNNs as in the SDM case. The gain of CNN variants using
ReLUs and Maxout in place of sigmoid activation functions
remains small. These trends can be observed for both the
AMI and ICSI datasets. We note that the WERs obtained
using the DNN or CNN models (table 1) are lower than the
WERs obtained for the discriminative GMM systems in the
MDM case trained on a beamformed signal.

Table 3 shows the results obtained for CNNs trained us-
ing multi-channel input without beamforming. The first row
presents a “conventional” approach where convolutional acti-
vations are produced by a sum of filter activations from each
channel. Since that was found to be especially harmful for
less constrained microphone configurations (ICSI) the fol-
lowing rows present a channel-wise approach where only the
maxium activations within the channels are considered [40].
For the AMI data the CNN architectures return similar WERs
to DNNs using beamformed input; for the ICSI data CNNs
using cross-channel pooling match the WERs obtained using
beamforming, probably due to less accurate TDOA estimates

Table 4. Word Error Rates (%) on AMI – IHM

System AMI
BMMI GMM-HMM (LDA+STC, SAT) 29.6
DNN – Sigmoid 26.6
DNN – ReLU 25.5
DNN – Maxout 26.3
CNN – Sigmoid 25.6
CNN – ReLU 24.9
CNN – Maxout 25.0

from the uncalibrated microphone array.

4.3. IHM – Individual Headset Microphone

For comparison purposes we present WERs for the differ-
ent architectures using close-talking IHM inputs, for the AMI
data (Table 4). The WER trend is similar to the distant micro-
phone cases, suggesting that the results for the different non-
linear activations generalise across signal qualities. BMMI-
GMM models were estimated using speaker adaptive training.

5. DISCUSSION & CONCLUSIONS

The presented distant conversational speech recognition ex-
periments have explored a number of different neural network
architectures, using different nonlinear functions for the hid-
den layer activations. Our results, using the AMI and ICSI
corpora, show that neural network acoustic models offer large
reductions in WER compared with discriminatively trained
GMM-based systems. Furthermore, we observed further sig-
nificant reductions in WER by using a convolutional layer
within a DNN architecture. Small, but consistent, reductions
in WER were also obtained by using ReLU and Maxout acti-
vation functions in place of sigmoids.

These neural network based systems used log spectral in-
put representations, which are potentially amenable to addi-
tional feature space transformations and modelling. In partic-
ular, our current experiments do not explicitly attempt to opti-
mise the acoustic model for overlapping talkers, or for rever-
beration. The promising results using raw multiple channel
input features in place of beamforming opens the possibilities
to learning representations taking into account aspects such
as overlapping speech.
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