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Abstract

The recurrent neural network language model (RNNLM) has
been demonstrated to consistently reduce perplexities and au-
tomatic speech recognition (ASR) word error rates across a
variety of domains. In this paper we propose a pre-training
method for the RNNLM, by sharing the output weights of the
feed forward neural network language model (NNLM) with the
RNNLM. This is accomplished by first fine-tuning the weights
of the NNLM, which are then used to initialise the output
weights of an RNNLM with the same number of hidden units.
We have carried out text-based experiments on the Penn Tree-
bank Wall Street Journal data, and ASR experiments on the
TED talks data used in the International Workshop on Spoken
Language Translation (IWSLT) evaluation campaigns. Across
the experiments, we observe small improvements in perplexity
and ASR word error rate.
Index Terms: Language Modelling, Recurrent Neural Net-
work, Pre-training, Automatic Speech Recognition, TED talks

1. Introduction

Until recently, smoothed n-gram language models (LMs) de-
fined the state-of-the-art in language modelling, and most large
scale automatic speech recognition (ASR) systems used a 3-
gram, 4-gram or 5-gram language model [1]. In an n-gram LM,
the probability of a word sequence is approximated as the prod-
uct of conditional probabilities of each word in the sequence
conditioned on the previous n–1 words. An unseen n-gram is
generalized by interpolation with a lower order n-gram model.

The n-gram LM has two principal drawbacks. First, the
language model is defined in an unstructured binary space of
word indices with no way to learn commonalities between
words, or generalise across them. Second, the size of the model
increases exponentially with respect to n. Neural network lan-
guage models (NNLMs), which learn distributed continuous-
valued word representations to compute the probability of a
word given the previous n–1 words, have been proposed to
address these problems [2, 3, 4]. In an NNLM, an unseen n-
gram is generalized based on distance and similarity between
the words in this continuous space. If the words in an unseen
n-gram are close enough to seen words during training, then a
similar probability will be assigned.

Similar to n-gram LMs, feed-forward NNLMs have a fi-
nite context of n–1 words — although the size of an NNLM
grows linearly, rather than exponentially, with n. Recurrent
neural network language models (RNNLMs) can learn contexts
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of potentially infinite length using a recurrently connected hid-
den layer. Experimental results using RNNLMs have shown
that they consistently result in reduced perplexities and word er-
ror rates (WERs) compared with n-gram models and with feed-
forward NNLMs [5, 6].

Recurrent neural networks (RNNs) are typically trained us-
ing back-propagation through time (BPTT) [7] in which the net-
work is “unrolled” through time, and the error signal is back-
propagated through multiple time steps. The basic form of this
algorithm can be problematic to use in practice, owing to the
problem of vanishing or exploding gradients [8, 9]. This prob-
lem was also identified, and addressed, by Robinson [10, 11]
who introduced a modified version of BPTT, in which the gra-
dient signals were used to increase or decrease a step-size for
each weight, rather than being used directly in the weight up-
dates. This training method proved to be a reliable way to train
RNN acoustic models [12], with order 105 parameters. An al-
ternative technique for training RNNs, known as real-time re-
current learning (RTRL) [13], does not require transmission of
an error signal back through multiple time frames, at the cost
of greatly increased space and computational requirements –
O(n3) and O(n4) respectively, for an n-unit recurrent network,
compared with O(nT ) and O(n2) for BPTT, back-propagating
through T time steps. Both BPTT and RTRL, correspond to
special cases of the technique known as algorithmic differen-
tiation (AD): BPTT is an example of reverse mode (or adjoint
mode) AD, and RTRL is an example of forward tangent lin-
ear AD [14]. The problem of training RNNs using BPTT has
been further addressed by Sutskever et al [15], who highlight
the importance of initialisation when training RNNs, setting the
scale of the input weights such that the learning dynamics of
the RNN neither quickly “forget” the hidden state, nor cause
the error gradients to explode.

In this work we investigate the whether transferring infor-
mation from a trained feed-forward NNLM can be used to ini-
tialise an RNNLM to improve the training performance in terms
of time and accuracy. We have conducted text-based experi-
ments (measured using perplexity) using the Penn Tree Bank
(PTB) Wall Street Journal data, and ASR-based experiments us-
ing the TED talks task that we have previously investigated as
part of the International Workshop on Spoken Language Trans-
lation (IWSLT) evaluation campaigns [16, 17].

2. Model architectures

2.1. Feed forward neural network language model

The architecture of a feed-forward NNLM is shown in Figure 1.
The inputs to the neural network are indices of the previous n–
1 words, encoded using 1 of N (one-hot) coding. The feature
vectors of each of the previous n–1 words are projected to a
P -dimension continuous space using an N ⇥ P weight matrix.
Since we use a one-hot representation for the words, this sim-
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Figure 1: Feed-forward neural network language model[2, 3]

s (t)

s (t−1)

w (t )

H

s (t)

H

N

0
 0

 0
 1

 0
 0

 0
 

U V

y (t )

Figure 2: Recurrent neural network language model[5]

plifies to copying the ith row of N ⇥ P matrix in the case of
the ith word in the vocabulary. The same weight matrix is used
to project other words in the context. The P -dimensional fea-
tures of the context words are concatenated and provided as an
input to the hidden layer, which typically uses a tanh activation
function. In the output layer, a softmax function is used to com-
pute the probability of a word given the context. The size of the
softmax layer is the size of the vocabulary, N .

The activations of projection and hidden layer, and the out-
put probability distribution are computed as follows:

hj = tanh
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In this work, we use a factored output layer [6] to reduce the
computational complexity.

2.2. Recurrent neural network language models

The architecture of a RNN is shown in Figure 2. The input to
the network at time t is the index of the previous word and the
state of the hidden layer at time t–1. The index of the previous
word is encoded using 1 of N coding.

The hidden layer at time t and the output probability distri-
bution are computed as follows:

x(t) = [w(t), s(t� 1)] (3)
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Figure 3: Pre-trained recurrent neural network language model
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Where x(t) is the input vector, s(t) is the state of hidden
layer at time t and y(t) is the output probability distribution.
f , g are sigmoid activation and softmax functions, respectively.
The objective of training is to maximize the likelihood of train-
ing data by minimizing the cross entropy difference between
the target and output probability distributions, using BPTT. The
number of steps for which the error is propagated back in time
is optimized for minimum perplexity on a validation set. In all
the experiments reported in this work, the error is propagated
three steps back in time and a factored output layer is used to
reduce the computational complexity.

2.3. Pre-trained Recurrent Neural Network Language

Model (PT-RNNLM)

In Figure 3, we show an architecture in which an RNNLM and
a feed-forward NNLM are combined. The feed-forward and
recurrent networks have the same number of hidden and out-
put nodes, and the output layer weights of the two networks
are shared. In the first phase of training, only the feed-forward
weights are trained (using back-propagation). When the feed-
forward network has been trained for a number of iterations, the
output layer weights are shared with the RNNLM, which may
be interpreted as an initialisation or pre-training. During testing
we only use the RNNLM part of PT-RNNLM to compute the
probability distribution. Again, we used a factored output layer
to reduce the computational requirement.

We evaluated these models using text data (Wall Street
Journal) and a perplexity measure, and using speech data (TED
talks) and a word error rate (WER) measure.

3. Text experiments

We report performed experiments on the Wall Street Journal
(WSJ) data in the Penn Treebank (PTB)1. Sections 0–20 were
used as training data, sections 21–22 were used as validation
data, and sections 23–24 used as test data. A 10,000 (10k)
word vocabulary was used, with out of vocabulary words be-
ing mapped to a special token <unk>. The number of tokens

1http://www.cis.upenn.edu/ treebank/



Model Valid. PPL +KN3 Test PPL +KN3
3-gram 162.4 - 152.9 -
NNLM 173.4 143.0 162.4 135.1

RNNLM 155.5 130.9 148.3 124.9
PT-RNNLM 150.7 128.7 143.4 123.0

Table 1: Perplexity of n-gram, NNLM, RNNLM and PT-
RNNLM trained on WSJ data. 100 hidden nodes and 100 output
classes are used in NNLM, RNNLM and PT-RNNLM

Figure 4: The number of iterations of pre-training Vs perplexity
of PT-RNNLM

in the training, validation and test sets were 930K, 74K and 82K
words respectively. In each experiment reported in this sec-
tion, 100 hidden nodes were used in NNLM, RNNLM and PT-
RNNLM. To reduce the computational complexity, a factored
output layer is used in NNLM, RNNLM and PT-RNNLM. The
dimension of the features in NNLM is 50. The baseline 3-gram
is Kneser-Ney smoothed (KN3) with default count cut-offs.

In the PT-RNNLM, first the weights of the NNLM were
fine tuned, until the difference in entropy between iterations on
a validation set was smaller than a predefined threshold. The
weights of the RNNLM were then fine tuned, by initialising the
output layer parameters with the fine tuned output layer param-
eters of NNLM. Perplexity (PPL) results are given in Table 1.
We can observe 4.2% and 3.0% relative improvements in PPL
for the RNNLM over the 3-gram baseline, on validation and
test sets respectively. The PT-RNNLM further reduces PPL by
3.0% and 3.3% relative on the validation and test sets. There is
a further 10–15% relative reduction in PPL (on both data sets)
when the neural network models are interpolated with the KN3
baseline LMs.

We investigated the behaviour of the PT-RNNLM with re-
spect to the number of iterations of pre-training (Figure 4).
There is a significant reduction in PPL after just one iteration of
pre-training, and a slight downward trend for a further eight it-
erations, before the curve flattens. From this we can conclude a
few iterations of pre-training is necessary to improve the predic-
tion accuracy of RNNLM, and the feed-forward network does
not need to be trained to completion.

4. Speech experiments

4.1. TED ASR task

TED2(Technology, Entertainment, Design) organises an inter-
national lecture series in wide range of disciplines. The lec-
tures are transcribed (and translated) using crowdsourcing, thus
providing about 200 hours of verbatim-transcribed data, which
have been used for ASR and machine translation evaluation as
part of the IWSLT evaluation campaign3. In this work, we used
the dev2010 and tst2010 sets for development and the tst2011

set for evaluation. The neural network language models are ap-
plied to the ASR system by re-scoring N-best lists (produced
from a system using an n-gram language model). These scores
may be interpolated with n-gram scores, with the interpolation
coefficients being optimized on development data.

4.2. ASR system

The ASR system [18, 19] uses deep neural network-based
acoustic models in both Tandem and Hybrid configurations,
both of which use the Multi Level Adaptive Neural Network
(MLAN) architecture for domain adaptation [18]. In the first
step, deep neural networks were trained on out-of-domain
(OOD). In the next step, the bottleneck features generated on
in-domain data using DNNs trained on OOD data are concate-
nated with the in-domain features. These concatenated features
are used to train Tandem and Hybrid MLAN HMMs.

The training data consisted of 143 hours of transcribed and
aligned TED lectures, and 127 hours of transcribed AMI4 meet-
ing data used to train the OOD networks in MLAN. To avoid
the overlap between development and evaluation sets all the
selected lectures for training are dated before 2010. Tandem
MLANs are trained with four hidden layers, each consists of
1024 hidden neurons. Six hidden layers are used in Hybrid
MLANs, each layer consists of 2048 hidden neurons. All the
scripts are written in Theano [20] and the models were trained
on NVIDIA GeForce GTX 690 GPUs.

4.3. Language models

4.3.1. n-grams

The ASR system uses Kneser-Ney (KN) smoothed n-gram lan-
guage models for decoding and lattice rescoring. The n-gram
language models are obtained by interpolating the language
models trained on 2.4M in-domain and 312M OOD word to-
kens. Given the mismatch between in-domain and OOD data,
the relevant sentences to the task domain are selected by com-
puting the cross entropy difference (CED) score [21] for each
sentence s:

DS = {s|HI(s)�HO(s) < ⌧} (6)

where HI(s) is a cross-entropy of a sentence with a LM trained
on in-domain data, HO(s) is a cross-entropy of a sentence with
a LM trained on a random subset of the OOD data of similar
size to the TED in-domain data, and ⌧ is a threshold to control
the size of DS .

The OOD data sources include Europarl, News Commen-
tary, News Crawl, and Gigaword. In the final ASR system KN
smoothed 3-gram and 4-gram LMs are used for decoding and
lattice rescoring, respectively.

2
http://www.ted.com

3
http://www.iwslt2013.org

4
https://www.idiap.ch/dataset/ami



Model PPL Tandem MLAN HMM
dev2010 tst2010 tst2011

4-gram 124 15.47 13.50 10.57
RNNLM-7.4M 161 15.04 13.13 10.30

PT-RNNLM-7.4M 159 14.94 13.03 10.22

RNNLM-12.4M 145 14.85 12.78 10.10

PT-RNNLM-12.4M 144 14.75 12.72 10.13
RNNLM-22.4M 132 14.71 12.59 10.06

PT-RNNLM-22.4M 129 14.46 12.57 9.86

Table 2: % WERs of n-gram, RNNLM and PT-RNNLM,
trained on combination of in-domain and subsets of OOD data
(Tandem acoustic model).

4.3.2. RNN language models

Given the complexity of training RNNLM and PT-RNNLM on
large amounts of data, we have trained the RNNLM and PT-
RNNLM on combination of in-domain and different subsets of
OOD data, selected using CED metric, as described in Sec-
tion 4.3.1. All the distinct words in the in-domain data are
retained and the words with frequency 1 in the OOD data are
replaced with <unk> label. The neural nets are trained until
the difference in entropy between two successive iterations is
less than a predefined threshold. In all the experiments reported
in this work the threshold is 0.01. The validation data for early
stopping – the combination of dev2010 and tst2010 – contains
a total 44K tokens.

4.4. Results

We report WER and PPL on the dev2010, tst2010 and tst2011

data sets. The RNNLM and PT-RNNLM are trained on com-
binations of in-domain data (2.4M word tokens) and three sub-
sets of OOD data (5M, 10M and 20M tokens). The number
of hidden neurons and number of classes in the output layer
are optimized for better WER. The models trained on 7.4M to-
kens consists of 300 hidden neurons and the models trained on
12.4M and 22.4M tokens consists of 500 hidden neurons. In all
the experiments reported here 100 classes are used in the output
layer to reduce the computational complexity. All the models
were trained on a computing cluster hosting Intel Xeon E5645
processors. Approximately, it takes 30 hours, 70 hours and one
week to train the models on 7.4M, 12.4M, 22.4M tokens respec-
tively.

The WERs after rescoring the the 100-best lists of Tan-
dem MLAN HMMs are given in Table 2. The PT-RNNLM
reduces the WERs by 0.1% over the RNNLM, in second sec-
tion of Table 2. The models trained on more OOD data in
combination with the in-domain data further reduce the WERs.
In third section of Table 2, the reductions in the WERs with
the PT-RNNLM are in the range of 0.06%-0.1%. Surprisingly
the WER of PT-RNNLM on tst2011 is slightly higher than
RNNLM. Similarly, the models trained on 22.4M tokens further
reduce the WERs, in fourth section of Table 2. If we compare
all the reported results on development and test sets, the pro-
posed PT-RNNLM reduces the WERs in most of the cases and
the reductions are consistent across data sets.

We also report the WER after rescoring the 100-best lists
produced using Hybrid MLAN HMMs. In second section of
Table 3, we can observe, the PT-RNNLM reduces WERs of
dev2010 by 0.1%, tst2011 by 0.25% and the WER of tst2010 is
almost equal to that of RNNLM. As expected the models trained
on more OOD data in combination with the in-domain data fur-

ther reduce the WERs. In section three and four of Table 3, we
can observe the reductions in WERs are in the range of 0.1%-
0.23% and 0.1%-0.15%, respectively.

To measure the statistical significance of a difference be-
tween two speech recognition algorithms, a paired test can be
run on their respective error rates, measured per utterance or per
segment so as to represent a set of independent samples [22].
In the present case, the appropriate granularity of measurement
was judged to be at the level of results per TED talk, since the
results within any one talk were on a fixed speaker and topic,
and hence were not independent samples, but the speaker and
topic changed between talks. Also it was the overall difference
between RNNLM and PT-RNNLM that was of interest, rather
than the difference on a specific training set size and with a spe-
cific acoustic model type. Therefore, a paired samples t-test
(two-tailed) was run on the per-talk average word error rates
with RNNLM and PT-RNNLM, where the averaging for each
talk and language modelling technique was over the three train-
ing data sizes (7.4M, 12.4M and 22.4M words) and the tandem
and hybrid models. This was done on the full set of 27 talks
(8 in dev2010, 11 in tst2010 and 8 in tst2011). The result was
a highly significant difference (p = 0.000275) in favour of PT-
RNNLM. This is significant at the 0.001 level, as recommended
in a recent analysis of significance levels with regard to strength
of evidence assessed by the corresponding Bayesian tests [23].

Model PPL Hybrid MLAN HMM
dev2010 tst2010 tst2011

4-gram 124 15.14 13.48 11.22
RNNLM-7.4M 161 14.91 13.04 10.83

PT-RNNLM-7.4M 159 14.81 13.05 10.58

RNNLM-12.4M 145 14.61 12.81 10.47
PT-RNNLM-12.4M 144 14.52 12.67 10.24

RNNLM-22.4M 132 14.45 12.57 10.07
PT-RNNLM-22.4M 129 14.30 12.48 9.95

Table 3: % WERs of n-gram, RNNLM and PT-RNNLM,
trained on combination of in-domain and subsets of OOD data
(Hybrid acoustic model).

5. Conclusions and Future work

In this work we have proposed feed forward pre-training for
RNNLM by sharing the output weights of NNLM with the
RNNLM. We report perplexity results on WSJ/PTB data, with
the PT-RNNLM reducing perplexity on both the validation and
test sets. We also investigated how many iterations of feed for-
ward pre-training is necessary to improve the prediction accu-
racy of RNNLM. We have observed a few iterations of pre-
training is sufficient. Finally we report the WERs on by rescor-
ing 100-best lists of Tandem and Hybrid MLAN HMMs for the
IWSLT TED talk recognition task, and observed a small but
significant reduction in WER from the PT-RNNLM over the
RNNLM.

There are a number of further approaches which we are
investigating to combine feed-forward and recurrent NNLMs.
This includes co-training rather than pre-training (i.e. train-
ing the output weights is interleaved between the feed-forward
and recurrent neural networks), sharing the projected contin-
uous space representations between the two architectures and
combining the feed-forward and recurrent architectures without
output weight sharing.
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