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Abstract
In previous work we have introduced a multi-task training tech-
nique for neural network acoustic modelling, in which context-
dependent and context-independent targets are jointly learned.
In this paper, we extend the approach by structuring the out-
put layer such that the context-dependent outputs are depen-
dent on the context-independent outputs, thus using the context-
independent predictions at run-time. We have also investigated
the applicability of this idea to unsupervised speaker adapta-
tion as an approach to overcome the data sparsity issues that
comes to the fore when estimating systems with a large num-
ber of context-dependent states, when data is limited. We have
experimented with various amounts of training material (from
10 to 300 hours) and find the proposed techniques are particu-
larly well suited to data-constrained conditions allowing to bet-
ter utilise large context-dependent state-clustered trees. Exper-
imental results are reported for large vocabulary speech recog-
nition using the Switchboard and TED corpora.
Index Terms: multitask learning, structured output layer, adap-
tation, deep neural networks

1. Introduction
Modelling context-dependent (CD) phones using tied-state
clustered trees, initially proposed by Young and Woodland [1],
has been a cornerstone of acoustic modelling for more than two
decades, providing a flexible data-driven framework for man-
aging the trade-off between the amount of training material and
the final size of the model. Combining this technique with deep
neural network (DNN) / hidden Markov model (HMM) hybrid
models [2, 3] was one of the major factors in the recent suc-
cess of DNNs for acoustic modelling [4, 5, 6]. The use of CD
states as targets for a single DNN allows for a greater level of
parameter sharing, in comparison with Gaussian mixture mod-
els (GMMs), where distinct clusters are modelled by a different
mixtures of Gaussian components, as well as with earlier ap-
proaches to modelling context-dependency in hybrid models,
where an ensemble of distinct networks was trained to estimate
a set of conditional probabilities necessary to derive a CD like-
lihood score [7, 8, 9].

Despite its widespread and successful use, the optimal
clustering for GMM-based systems is often suboptimal for
DNNs [10, 11]. Under data-constrained conditions some ad-
ditional initialisation techniques [5, 12, 13, 14, 15] need to be
applied to fully utilise large CD trees. We propose a structured
output layer – an approach that allows the optimisation and pre-
diction of CD and context-independent (CI) targets jointly, with
an explicit dependence of CD targets on CI targets. This makes
it possible to use CI predictions at test time as well as learning
a more difficult task in combination with an easier one.

2. Structured Output Layer
We build our model based on a multi-task learning approach
[16] and its applications to robust [17] and cross-lingual [18,
19, 20] acoustic modelling, where the hidden representation
is shared and jointly optimised across tasks. In this paper
we are concerned with multi-task training within a single lan-
guage. The choice of an auxiliary task was inspired by the
work of Zhang and Woodland [13] who found the use of CI
targets for layer-wise discriminative pre-training followed by
CD fine-tuning leads to the models that better generalize, and,
due to low dimensionality of the CI task, are also faster to pre-
train. The idea of layer-wise pre-training itself was proposed by
Bengio et al. [21] and was further explored in acoustic mod-
elling for speech recognition by Seide et al. [12]. However,
in [12], contrary to [13], pre-training and fine-tuning relied on
the same context-dependent task. More recently we extended
the CI-based initialisation technique to multi-task training [22]
where both context-independent and context-dependent targets
are jointly trained. All these methods implicitly implement a
form of curriculum learning [23] where a lower entropy task
(with respect to the complexity of classification task or the num-
ber of the optimised weights used for intermediate predictions)
is employed to iteratively place some relevant prior on the pa-
rameters: for example, by forcing the model to predict simpler
(but related) concepts first, or using initially fewer parameters
which are then expanded as the training progresses.

In this work we further extend [13, 22] by using the CI layer
not only at the (pre-)training stage but also to compute CD out-
puts at run-time – the structured output layer (SOL). The SOL
estimates the CI outputsmt as an auxiliary task – (1) and (2). In
the original multitask formulation, the CD outputs st would be
estimated independent of the CI outputs at runtime – (3) and (4)
– whereas using the SOL, the CD outputs are given by (5) and
(6). If am represents the CI layer activations, and as and asm

represent the CD layer activations with and without dependency
on the the CI layer, then we have:

am = (xtM + m) (1)
P (mt|ot) = softmax(am) (2)

as = (xtS + b) (3)
P (st|ot) = softmax(as) (4)

asm = (xtS + ψ (am)C + b)

= (as + ψ (am)C) (5)
P (st|ot) = softmax(asm), (6)

where ot is the acoustic input. The SOL layer, depicted in Fig
1, is then composed of parameters θθθSOL = {S,M,C,b,m},
where S ∈ RX×S and b ∈ RS represent hidden to CD weight
matrix and bias, respectively. M ∈ RX×M and m ∈ RM are
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Figure 1: The model with the structured output layer (SOL).
P (s|x) can be computed with or without a dependendency on
the mononphone layer to compute either asm (5) or as (3).

for hidden to CI targets while C ∈ RM×S are the CI to CD
connection weights, allowing us to use the easier monophone
prediction task when deciding on (harder) context-dependent
tied-state both in training and also at run-time. ψ is the non-
linearity used for the activations of the CI layer in the SOL. The
remaining part of the model follows the usual structure with L
hidden layers {h1, . . . ,hL}. In the remainder of this paper, we
will be focused mostly on the SOL layer itself, rather than the
model as a whole. As such, we introduce an auxiliary variable
xt ∈ RX which denotes the vector of top hidden layer activa-
tions at a time t, or when considering a mini-batch of examples,
xt becomes to be x ∈ RB×X , where B is the mini-batch size.

We learn the model by optimising a global cost, the
weighted sum of each of the separate costs:

F = (1− α)Fs + αFm, (7)

where both CD (Fs = −
P

t logP (st|ot;θθθs)) and CI (Fm =
−

P
t logP (mt|ot;θθθm)) components are expressed as a gra-

dient descent on a negative log likelihood over T training ex-
amples. Note that we obtain both predictions in parallel in a
single forward-pass which is different from our earlier work
[22] and from the multi-task framework in general, where the
tasks are usually treated as independent and processed sequen-
tially. Effectively, the gradients used to update the parameters
are expressed as the weighted average of both tasks with the kth
parameter’s gradient taking the following form:

∂F
∂θθθk

= −
TX
t

h
(1− α)

∂

∂θθθk
s

logP (st|ot;θθθs)

+ α
∂

∂θθθk
m

logP (mt|ot;θθθm)
i

(8)

Given that θθθ includes all the model’s parameters (including
those in the hidden layers), the task-specific parameter subsets
are defined as θθθs = θθθ\{M,m} and θθθm = θθθ\{S,C,b} forFs

and Fm, respectively. In practice, to perform updates, we sim-
ply set unrelated gradients (with respect the given cost) to zero
when computing final partial derivatives in (8), for example, we
set ∂Fm/∂S = 0 and scale the corresponding learning rate for
∂Fs/∂S by 1/(1−α). Likewise, forFm we set ∂Fs/∂θθθm = 0
and scale the CI learning rate by 1/α.

Depending on our assumptions, the back-propagation of
CD errors may also influence the parameters on CI path, includ-
ing the Fm classification layer. We consider four scenarios:

1. Gradients of Fs on the “monophone” path are truncated
after C and the back-propagated errors from Fs cost to
the lower layers is:

∂Fs

∂xt
=
∂logP (st|ot;θθθs)

∂as

∂as

∂xt

2. Gradients flow through M down to the lower lay-
ers, but M and m by Fs is considered constant, so
{∂Fs/∂M, ∂Fs/∂m} = 0 and the error signals are:

∂Fs

∂xt
=
∂logP (st|ot;θθθs)

∂as

∂as

∂xt

+
∂logP (st|ot;θθθs)

∂asm

∂asm

∂ψ

∂ψ

∂am

∂am

∂xt

3. FS influences all dependent parameters, so the back-
propagation is as in point 2 above, but partial derivatives
∂Fs/∂M and ∂Fs/∂m are non-zero and used to update
M and m in eq. (8).

4. C in not learned jointly in MT learning but is added at
post-processing stage and fine-tuned given the predic-
tions for P (st|ot;θθθs) and P (mt|ot;θθθm)

The model with a SOL layer exhibits the advantages of clas-
sic single-language multi-task approaches [22, 24, 25] – its hid-
den representation is shared across the tasks, so the resulting
features are less prone to over-fitting and, as a result, should
yield a better generalisation.

The other potential advantage comes from a modelling per-
spective: it is well known that the perceptron (or a logistic
classification layer) can only solve linearly separable problems,
with Exclusive Or (XOR) being an infamous example [26]. It
is also clear that the transformed acoustic features in the top
hidden layer retain highly non-linear characteristics (this can be
seen by an error sensisitivty analysis). The well known solu-
tion for the “perceptron problem” is an extra intermediate layer
connecting the inputs with the outputs [27], or in a even sim-
pler scenario, an extra unit describing the relation between the
inputs and sending the outcome to the output unit. The latter
case is what an auxiliary layer can do in our model, projecting
the activations onto CI space, based on which the CD layer can
additionally partition the CD space using CI predictions.

The idea of auxiliary targets has been investigated as a “lo-
cal” coordinate optimisation system [28], where a long chain of
back-propagation through many layers is replaced by a shallow
sequence of layer-oriented objectives.

3. Experiments
We work with the TED talks corpus [29] following the IWSLT
(www.iwslt.org) evaluations and the Switchboard corpus
of conversational telephone speech [30].

For TED talks we primarily work on 143 hours of data
obtained with light supervision [31], following the recipe de-
scribed in detail in [32]. For the purpose of this work, we ad-
ditionally sub-sample random subsets of 10 and 30 hours of
training material to simulate data constrained conditions. We
do most experiments on the 30 hours split, reporting the most
promising configurations on 10 hours and the full 143 hours.
This work, compared to [32] benefits from better language mod-
els developed for 2014 IWSLT evaluation campaign [33], in



Table 1: WER(%) results on tst2010 set. Models trained on
30 hour data-split with α = 0.3

Model tst2010 +4gm
S1 CD-NN (1k) 23.1 ± 0.1 19.7
S2 SOL-NN const.∂Fs/∂{M,m} 22.8 19.5
S3 SOL-NN ∂Fs/∂θθθm 21.9 ± 0.2 18.7
S4 SOL-NN + PI Monophones 22.7 19.4
S5 SOL-NN + Retrained CD 22.5 19.2
S6 CD-NN (2k) 22.6 19.2
S7 SOL-NN (2k) ∂Fs/∂θθθm 21.6 18.5

particular, we decode with pruned trigrams and rescore with
4-grams. The models are trained on unadapted PLP [34] fea-
tures with first and second order time derivatives with an 11
(±5) frame context window. All models under all data condi-
tions are trained with 12,000 CD targets. For the CI task we
use 186 position-dependent phones, and in some control exper-
iments we use 45 monophones. For data constrained scenarios
(10 and 30 hours) our models have 6 hidden layers with 1,000
units each, we additionally perform low-rank factorisation of
the output CD layer by inserting a linear-bottleneck [35, 36],
i.e. our layer becomes S = Sin × Sout, where Sin ∈ RX×N

and Sout ∈ RN×S with N=256.
For Switchboard we use the Kaldi GMM recipe [37, 38], us-

ing Switchboard-1 Release 2 (LDC97S62). Our acoustic mod-
els share the same architecture as the models used for Full-TED
data, except for compatibility with the results reported by other
researchers we train on unadapted MFCC features. The results
are reported on Hub5 00 (LDC2002S09).

3.1. Structured output layer

In this section we look at different training scenarios for
SOL-NN, comparing with a baseline DNN model, with 1,000
hidden units and the low-rank factorisation of the CD output
layer. The baseline results are given in row (S1) of Table 1.

We explored the training scenarios outlined in Section 2.
We found that both truncation of C (scenario 1) and optimising
C as a post-processing step (scenario 4) resulted in very high
frame error rates in comparison with the baseline. Row (S2)
gives word error rates (WERs) for the case where the CD cost
is not used to update M and m; row (S3) shows the opposite
scenario indicating that updating the CI-dependent parameters
using the Fs cost yields the lowest WER, 21.9%, a 6% relative
improvement over the baseline. Row (S4) is a model trained on
45 position-independent phones (compared to the other models
utilising 186 position-dependent phones). Model (S5) is built
from the hidden representation of (S3) with a new CD regres-
sion layer showing that both the SOL layer and multitask train-
ing are important.1 Finally, rows (S6) and (S7) present WERs
for larger models showing over 1% absolute (or 0.7% for re-
scored lattices) gain for SOL-NN structure.

Table 2 presents WERs for different activation functions
(ψ) connecting M and C using (S3) model from Table 1. The
linear connection was found to work best, and in the follow-
ing part of the paper we follow the structure and optimisation
procedure used to train model (S3).

Figure 2 shows WER (on tst2010), as well as corre-

1We did some sanity checks, and the corresponding models (S1) and
(S3) with retrained top layers converged to their base model accuracies
where all layers were jointly optimised.

Table 2: WER(%) on tst2010 set for different M to C ψ
activations. The base model is SOL-NN ∂Fs/∂θθθm, α = 0.3

ψ-activation
linear softmax sigmoid relu tanh

21.9 22.2 22.5 22.4 23.1
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Figure 2: WER and FER as a function of α.
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Figure 3: Top) Convergence plots for SOL-NN and baseline
CD/CI models models on dev2010. Bottom) Distribution of
CD states obtained from ground-truth labels and the estimates
of CD-NN and SOL-NN models.

sponding CD and CI frame error rates (FER) for different
weighting constants α, the best WER results (and also FER for
CD task) were obtained with α=0.3.

Finally, Fig 3 shows convergence plots of baseline and
SOL-NN models (no significant differences) as well as the
predicted distributions of CD states under both models com-
pared with the expected one obtained using ground-truth align-
ments of dev2010 (all sorted by occurrence frequencies). The
SOL-NN better deals with modelling a tail of a distribution,
which could explain why there are small differences in the log
likelihoods but significant reductions in word error rates.



Table 3: Detailed results on tst2010 and unsupervised adap-
tation with LHUC using auxiliary targets on 30 hours models.

α
System 0 0.3 0.5 0.7 1
Baseline 21.9
+4gm 18.6
Adaptation with 10 seconds per speaker
+LHUC 21.3 21.2 21.1 21.25 21.6
++4gm 18.0 18.0 17.9 18.2 18.45
Adaptation with all speaker’s data
+LHUC 18.3 18.3 18.3 18.5 19.0
++4gm 16.0 15.7 15.8 15.7 16.1

3.2. Multi-task adaptation

In this section we investigate the feasibility of using the CI tar-
gets to perform unsupervised two-pass adaptation. Our moti-
vation is that CI modelling is usually characterised by a lower
frame error rate, and at the same time there is less sparsity in the
distribution of CI targets, given the same amount of adaptation
data, hence potentially obtaining better adaptation results com-
pared to a CD-only objective. A similar approach, but using
hierarchy of output layers and CI-only adaptation targets was
proposed by Price et al. in [39].

We adapt our speaker-independent models with a technique
which learns hidden unit contributions (LHUC) [40, 41] given
unsupervised adaptation data. We report the adaptation results
for two scenarios, using both a limited amount of 10 seconds of
speech per speaker as well as full two pass adaptation. For the
10s scenario we repeated the experiments 5 times, for randomly
selected utterances, and report the average WERs.

The results on tst2010 are reported in Table 3 showing
that around 0.2-0.3% absolute gain was obtained on top of CD-
only adaptation for both scenarios. Interestingly, when using all
adaptation data available for a given speaker, interpolated adap-
tation does not bring a WER reduction with a pruned trigram
LM, but re-scoring with a 4-gram brings up to 0.3% absolute
gain on top of CD targets only. The cost objectives for adapta-
tion with different α are plotted in Fig 4.

We observe similar gains when adapting models on other
test sets. With α = 0.5, WER on dev2010 is 0.3% abs.
lower for the 10s adaptation scenario. Similarly to tst2010,
interpolated (α = 0.5) adaptation on dev2010 with the whole
speaker’s data reduced the WER by 0.2% abs. when compared
to CD-only adaptation. On tst2011 adapting with 10s gave
smaller reductions for both methods (0.2% abs.) regardless of
α; this could be due to the fact tst2011 is better matched to
training conditions and benefits less from adaptation.

3.3. Full TED and Switchboard

Finally, we report summary results on three scenarios for TED
(10, 30 and 143 hours) in Table 4, as expected, we observe sim-
ilar gains from the proposed method on even more constrained
scenario (10 hours) and also, as expected, the adaptation brings
larger gains there since the SI models see less speaker vari-
ability during training. For larger models and more training
data the gains diminish, with a small improvement of 0.3%
on tst2011, but not on dev2010 and tst2010 for Full
TED. On Switchboard task (Table 5) the SOL-NN model re-
duced WERs on Switchboard (SWB) part at the same time in-
creasing the metric on CallHome (CHE) test data, making the
model falling back 0.2% WER in average behind the baseline.
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Figure 4: Context-dependent frame error rates as a function of
adapting iterations for different values of α on tst2010.

Table 4: Summary results on the remaining TED test-sets and
different amounts of training material and LHUC adaptation
with pruned and (4gm) language models.

WER (%)
System dev2010 tst2010 tst2011

10 hour
CD-NN 27.0 (23.3) 28.1 (24.4) 22.7 (19.3)
SOL-NN 25.6 (21.9) 26.6 (22.8) 21.3 (18.3)
+LHUC (All) 22.8 (19.8) 22.4 (19.4) 19.0 (16.7)
30 hour
CD-NN 22.9 (19.8) 23.2 (19.7) 19.2 (15.8)
SOL-NN 22.0 (19.1) 21.9 (18.7) 17.8 (14.9)
+LHUC (All) 19.3 (17.1) 18.3 (16.0) 15.5 (13.4)
143 hour
CD-NN 18.3 (15.7) 17.9 (15.2) 14.6 (12.5)
SOL-NN 18.3 (15.7) 17.9 (15.1) 14.4 (12.2)
+LHUC (All) 16.8 (14.6) 14.9 (12.7) 12.8 (11.2)

Table 5: WER(%) on Switchboard Hub00
Hub5’00

Model SWB CHE TOTAL
CD-NN 15.8 28.4 22.1
SOL-NN 15.6 28.9 22.3

4. Conclusions
We have proposed a structured output layer, an approach in
which an auxiliary (context-independent) task is used as a regu-
larizer during training but also as an auxiliary predictor in deriv-
ing context-dependent tied states for decoding. We have inves-
tigated various training strategies for this technique, and have
shown that this approach is an effective way of addressing un-
supervised adaptation with sparse data. For future work we are
interested in evaluating with respect to other techniques pro-
posed for low-resource speech recognition as well as extending
to sequence discriminative training.
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