
REGULARIZATION OF CONTEXT-DEPENDENT DEEP NEURAL NETWORKS WITH
CONTEXT-INDEPENDENT MULTI-TASK TRAINING

Peter Bell and Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH8 9AB, UK

ABSTRACT

The use of context-dependent targets has become standard in hybrid
DNN systems for automatic speech recognition. However, we argue
that despite the use of state-tying, optimising to context-dependent
targets can lead to over-fitting, and that discriminating between ar-
bitrary tied context-dependent targets may not be optimal. We pro-
pose a multitask learning method where the network jointly predicts
context-dependent and monophone targets. We evaluate the method
on a large-vocabulary lecture recognition task and show that it yields
relative improvements of 3-10% over baseline systems.

Index Terms— deep neural networks, multitask learning, regu-
larization

1. INTRODUCTION

This paper proposes a technique for managing the trade-off between
modelling monophone and tied triphone states in deep neural net-
work (DNN) based ASR. The use of state-clustered context depen-
dent (CD) phone units (also known as senones) was an key advance
in the performance of HMM-GMM continuous speech recognition
systems in the 1990s [1], giving an important competitive advantage
over hybrid neural network based approaches such as [2, 3] used
at the time. Although some hybrid systems used a limited form of
context-dependence [4, 5, 6], they were limited in the ability to fully
model CD phone units partly by computational constraints and the
limited capacity to scale to larger quantities of training data, and
partly by the innovation of GMM-based state-clustering to deal with
data sparsity issues, limiting the number of tied states modelled to
far below the maximum number of possible CD units.

The benefit of CD units in GMM systems may be explained by
two distinct effects: first, given sufficient training data, increasing
the number of states modelled by using CD labels over context-
independent (CI) monophone labels simply results in a larger, more
powerful generative model of the acoustic space. This divide and
conquer approach is similar to modelling different genders or back-
ground noise conditions using separate states, which may give
benefits on test data even when the gender or noise is unknown
at test time . Second, and perhaps more significantly, however,
when computing the acoustic likelihood of observed acoustics x
and a hypothesised phone sequence (p1, p2, . . . ) during decoding,
the decoder replaces the joint probability p(x, p1, p2, . . . ) with
p(x, p1+p2, p1–p2+p3, . . . ), which may be interpreted as a context-
sensitive adaptation of each phone model to its local acoustic context
under the current hypothesis. This allows more effective discrim-
ination: suppose that phones pi and pj are acoustically close. If
there are contexts a, b, c, d where pa–pi+pb and pc–pj+pd overlap
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in acoustic space, this would present a problem for a context-
independent decoder, but is more easily discriminated by a decoder
using context-dependent units, especially if the contexts a, c and b, d
are acoustically distinct.

After a period in which neural networks were primarily used
to generate features for GMM systems (the tandem and bottleneck
approaches [7, 8]), they have returned to widespread use in hybrid
systems, generating posterior probabilities over tied states, which are
scaled by state priors to obtain pseudo-likelihoods for use in a stan-
dard HMM decoder. Along with the use of deep network structures,
a major factor in this revival was the switch to using networks with
tied-state CD phone targets obtained from a GMM [9, 10], which
demonstrated marked improvements over the use of monophone tar-
gets. To date, most DNN-based systems have followed [9] in using
the GMM to obtain the CD state clustering and alignments for train-
ing [11], although there are recent approaches using purely DNNs
for this task [12, 13], removing all requirement for GMMs.

In this paper, we question whether this approach to modelling
CD units is optimal, regarding the requirements for both discrimina-
tion and generalisation. We propose a DNN acoustic model which
jointly predicts both CD and CI units using multitask learning. In
the following section we motivate the proposed method and discuss
its relation to prior work.

2. CONTEXT MODELLING IN DNNS

We consider the advantages of modelling CD units with DNNs, with
the respect to the benefits for GMMs outlined in the previous section.
Clearly, the second effect of improved discrimination when decod-
ing continues to apply: when computing the likelihood of a hypoth-
esised phoneme sequence, it is useful for the decoding to take into
account acoustic context. But does the first effect of more powerful
modelling of the acoustic space still apply? Unlike the GMM, when
trained with the usual cross-entropy criterion the DNN is an inher-
ently discriminative model, learning weights to optimise the decision
boundaries between classes. The functional form of these decision
boundaries is determined by the network structure and class labels,
rather than directly by the within-class model structure – and so the
first effect is not applicable. In fact, we suggest, there is a disad-
vantage to using CD phones as DNN targets: there is no distinc-
tion between discrimination between different phones, and between
different contexts of the same phone. The latter discrimination, as
well as being rather arbitrary, varying according to the specific state
clustering used, has a much more limited benefit to producing a
more accurate phone hypothesis at test time – yet both are treated
equally in cross-entropy DNN training. This may result in lower
layers of the network learning discriminations that are not benefi-
cial to the ultimate performance, essentially wasting free parame-
ters. It may be noted that two standard methods of discriminative
training for GMMs, using the MMI or MPE criteria [14] that operate



at the sequence level do not attempt to increase discrimination be-
tween different triphone contexts of the same phone. Also, the earli-
est proposal for context-dependent neural network (CDNN) acoustic
modelling [4], was based on a conditional probability factorisation
which resulted in a network trained to discriminate monophones, be-
ing combined with one or more networks trained to discriminate the
context given the monophone.

There is of course, a second problem with modelling CD units
compared to CI units, being the inherent data sparsity issue in having
a large output layer, despite the use of state clustering. Increasing the
number of output units obviously increases the number of weights
to be trained between the output layer and final hidden layer, with
fewer samples with fewer samples available to train each weight. Via
backpropagation, this may lead to over-fitting in the lower layers .

We propose a novel use of multitask learning [15] to solve both
problems described above. The aim of multitask learning is to im-
prove the generalisation of the network by applying it to two related
tasks, sharing the hidden layers, whilst alternating the output layer
according to the task, with the aim of learning a better hidden rep-
resentation for both. The technique was, to our knowledge, first ap-
plied to ASR in [16] to integrate classification and enhancement of
noisy speech with RNNs. More recently it has been applied to joint
learning of triphones and trigraphemes [17], and also cross-lingual
applications [18, 19]. Specifically, we propose using multitask learn-
ing to jointly learn tied state CD targets and monophone CI targets.
This seems somewhat counter-intuitive, since the CD targets already
encode all information about the relevant monophone, suggesting
that adding monophone prediction as a related task would have lit-
tle effect. However, we hypothesise that the use of a reduced set of
targets will reduce over-fitting in the lower layers, whilst explicitly
encouraging discrimination between CI targets, rather than CD tar-
gets – all without diminishing the power of the DNN to model the
CD targets themselves. In the terminology of [15], this could be
viewed as “eavesdropping”: here the hidden layer is useful to both
tasks, but is difficult to learn for the larger task because it depends
on the hidden layer in a more complex way, or because the residual
error in the larger task is noisier.

Multitask learning has been proposed as a means of learning of
phone context [20]. However, this differs substantially from our pro-
posed technique in that the basic units modelled were monophones,
applied to the TIMIT phone classification task (where the use of CD
units is less common). Left and right phonetic contexts were used
as the additional tasks, but there was no direct modelling of tied tri-
phone states by the DNNs.

Although we believe that there are additional advantages to the
proposed technique, as a form of regularisation, it should be com-
pared to other regularisation methods proposed for DNNs with the
aim of improving generalisation. These generally take the form of
schemes for initialising the weights before backpropogation over
the full deep structure. Perhaps the most well-known is the use of
restricted Boltzmann machine (RBM) pre-training [21], where the
each successive layer is initialised with the weights of an unsuper-
vised generative model. A second, more closely-related method is
curriculum learning [22]: the idea here is to first present the network
with “easier” examples, illustrating simpler concepts, and gradually
increasing the complexity: in other words, initially training on sam-
ples from a lower-entropy distribution and increasing entropy during
training. Applied to ASR, this could be implemented by training
first on a monophone targets for initialising the network in a pre-
training phase, before performing full training on the CD units: this
is subject of recently-proposed work [23]. We present experimental
comparisons with the use of RBM pre-training and curriculum learn-

ing. Regularisation based on Kullback-Liebler (KL) divergence has
been recently proposed for DNN adaptation [24]. This can be inter-
preted as a constrained case of multitask learning, where no weights
are allowed to vary independently.

3. METHODOLOGY

3.1. Baseline DNN system

Our baseline system uses feed-forward DNNs in a standard hybrid
configuration, modelling frame posterior probabilities over CD units
using state clustering derived from a HMM-GMM system, also used
to obtain state labels for each frame.

This system used three-state cross-word triphone HMMs, tied
to give approximately 6,000 CD units in total. The GMM used 16
Gaussians per state. The DNNs used 6 hidden layers with 2048 units
per layer. The hidden layers use logistic sigmoid non-linearities,
with a softmax function used for the output layer. The DNNs were
fine-tuned using back-propagation over the full structure using the
framewise cross-entropy criterion. Learning rates were reduced us-
ing the “newbob” schedule, measuring the performance of the net
using frame error rate on held-out validation data. Training was per-
formed on NVIDIA GeForce GTX 690 GPUs using an in-house tool
based on the Theano library [25]. For decoding, all systems used
the tied state posterior probabilities generated by the DNN, scaled
by state priors estimated over the whole training data.

The experimental task we chose benefits substantially from
speaker adaptation due to the relatively large quantities of data
available for each test speaker. Therefore, following a procedure we
have used previously [26] we used speaker-adaptive training (SAT)
for the DNNs: for each training speaker, we estimated a single con-
strained maximum likelihood linear regression (CMLLR) transform
[27] with reference to a GMM trained on the same features. These
transforms were used to generate speaker-normalised features as
inputs for the DNN training. At test time, the output of a speaker-
independent first pass was used to estimate a CMLLR transform for
each test speaker in a similar manner, which was used to generate
final features for decoding with the SAT-DNNs.

3.2. Regularisation and multitask learning
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Fig. 1. Multitask network structure

For the proposed method of using the shared network to jointly
predict both CD unit labels and CI labels, we used the network struc-
ture shown in Figure 1. All parameters are shared except for the
weights and biases between the final hidden layer and the two out-
put layers. This structure aimed to maximise the number of shared
parameters. Note that since each CD unit can be mapped to a unique



monophone label, it would also have been theoretically possible to
derive one set of output weights from the other, but we did not to do
this, to avoid any over-fitting in the CD output layer from affecting
the performance of the CI outputs. For the CI output layer, we used
targets corresponding to the 41 monophones in the dictionary – we
did not model monophone states separately. In multitask training of
the network, samples for each task were presented randomly in an
interleaved fashion at the minibatch level, so that over a complete
epoch, each training sample was seen twice, with different targets.
We did not weight the two tasks differently.

As mentioned above, we also investigated alternative, related
methods of regularisation. We compared a random initialisation of
the layers firstly with initialisation using layer-by-layer RBM pre-
training, and secondly, with a complete round of discriminative pre-
training using the monophone targets only. The latter may be viewed
as a form of curriculum learning. These two techniques may also be
combined with the multitask training scheme in the final finetuning.

3.3. Acoustic features

We experimented with two sets of input features to the nets. Ini-
tially, we used 13-dimensional PLP features, with first and second
derivatives appended. These were normalised to zero mean and unit
variance, then transformed with a per-speaker CMLLR transform
as described in Section 3.1. PLP features were chosen over features
such as filterbank coefficients for the ease of CMLLR adaptation. As
input to the nets, we use features with 9 frames of acoustic context.

As a second set of input features, we used tandem features
obtained using the multi-level adaptive networks (MLAN) scheme
[28]. Following this scheme, a second DNN trained on out-of-
domain (OOD) data in a conventional fashion was used to generate
bottleneck features for the in-domain training data, which were
appended to the original PLP features. The complete procedure is
illustrated in Figure 2.

In this case, we used OOD DNNs trained on 300 hours of con-
versational telephone speech from the Switchboard corpus. For max-
imum diversity, we used filterbank coefficients here, generated using
a filter to match the bandwidth of telephone speech. This proves
to be a useful way of using narrowband speech data in wideband
speech applications, which we will explore in more detail in future.
SAT training was applied to the tandem feature vectors, and again,
we use 9 frames of acoustic context.
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Fig. 2. Multitask network structure with MLAN features

System Pretraining dev2010 tst2010 tst2011 mean
Baseline none 16.4 15.4 12.9 15.1
Baseline RBM 16.9 15.6 13.0 15.4
Baseline monophone 16.4 15.6 13.0 15.2
Multitask none 16.2 15.0 12.2 14.8
Multitask RBM 16.1 15.0 12.4 14.8
Multitask monophone 15.9 14.9 12.3 14.6

Table 1. WER (%) across different test sets for systems trained on
speaker-adapted PLP features

4. EXPERIMENTS

4.1. ASR task

We perform experiments on the TED English transcription task used
in the IWSLT evaluation campaign [29]. We present results on the
dev2010, tst2010 and tst2011 sets, each containing 8-11
single-speaker talks of approximately 10 minutes’ duration. The
talks are pre-segmented by the IWSLT organisers [30]. Following
the IWSLT rules, our in-domain acoustic model training data was
derived from 813 publicly available TED talks dating prior to end of
2010, giving 143 hours of speech for acoustic model training.

For the experiments presented here, we use a trigram LM trained
on 312MW from data sources prescribed by the IWSLT evaluation,
which include the corpus of TED talks, and the Europarl, News
Crawl and Gigaword corpora. The vocabulary was limited to 64K
words, selected according to unigram counts. Decoding was per-
formed using HTK’s HDecode, with customisations to allow the use
of pseudo-likelihoods generated by DNNs. We did not perform any
rescoring with a larger LM in this work.

4.2. Results

In Table 1 we present the results of various systems trained on
speaker-adapted PLP features. We investigated systems with no
pre-training, with RBM pre-training and with discriminative pre-
training using monophone targets. For each pre-training method,
we compare baseline systems trained only on CD targets with sys-
tems using the proposed multitask method. A clear trend is that
multitask systems outperform the baseline, regardless of the use of
pre-training, with a mean reduction of 0.5% absolute between the
best baseline system and the best multitask system. The benefits of
the various pre-training methods are less clear, as can be observed
by the inconsistencies in performance across the different test sets.
Generally, it seems that RBM pre-training is not beneficial for this
size of training data. Monophone pre-training is shown to outper-
form RBM pre-training, but in the baseline case, no pre-training at
all generally seems to be better.

In these experiments, we found that the performance of the base-
line systems is quite sensitive to the initial learning rate used for the
newbob schedule in finetuning, with rates towards the lower end our
normal range performing particularly poorly. Following investiga-
tions on validation data, we generally set the initial learning rates of
for these systems to 0.16, although exhaustive optimisation was not
possible for all systems. By contrast, the multitask nets appear to be
less affected by the initial learning rate, but we generally use 0.06 or
0.08 for these systems, which can be seen as compensating for the
fact that training samples are presented twice during each epoch.

It is interesting to look at frame error rates (FER) on validation
data held out during DNN training, shown in Table 2. With respect
to the CD units, the FER actually increases when multitask training



System Baseline CD Multi CD Multi Monophone
Monophone - - 31.9
No PT 54.3 55.4 31.5
RBM PT 54.5 55.1 30.9
Monophone PT 54.7 55.5 30.1

Table 2. Frame error rates (%) with respect to CD units and mono-
phone units, computed on validation data for baseline and multitask
(“Multi”) systems trained on speaker-adapted PLP features

System Pretraining dev2010 tst2010 tst2011 mean
50% training data
Baseline none 18.9 18.3 15.3 17.8
Baseline monophone 18.6 17.7 14.7 17.3
Multitask none 16.9 15.9 13.1 15.6
Multitask monophone 17.4 16.1 13.5 15.9
20% training data
Baseline none 21.4 21.0 17.4 20.3
Baseline monophone 20.9 20.4 16.7 19.7
Multitask none 19.0 17.9 14.7 17.5
Multitask monophone 18.9 18.0 15.1 17.6

Table 3. WER (%) for systems trained on speaker-adapted PLP fea-
tures with reduced data

is applied, despite the reduction in WER. This supports the theory
that adding the prediction of monophone outputs as a second task as
indeed improving the generalisation of the net, by preventing it over-
fitting to the CD targets. At the same time, the FER with respect
to the monophone units is improved, compared to a system trained
purely to the monophone targets, suggesting, as found in [20] that
from this perspective, the use of context is a second task aids mono-
phone prediction. Comparing with the results of Table 1 hints that
monophone FER may be a better predictor of WER, even though CD
outputs are used by the decoder.

Next, we investigate the regularising effects of the proposed
technique by artificially reducing the quantity of training data used
for all DNN training. We keep the network topology and state align-
ments the same. Table 2 shows the effects of reducing the quantity
of data to 50% and 20% of the full set, both with and without mono-
phone pre-training. The results are shown graphically in Figure 3.
It may be seen that the proposed technique consistently outperforms
the baseline here, and the gap widens significantly when less data is
available. It appears that monophone pre-training yields some ben-
efit to the baseline systems in the limited data cases, but is not as
effective as using multitask training.

Finally, we present results combining multitask training with the
MLAN scheme introduced in Section 3.3. We did not apply RBM
pre-training on the MLAN features The use of OOD features gives
further improvement, reducing the mean WER by around 1.2% in
the full-data condition. The multitask training continues to yield
benefits over the baseline: 0.4% on average when no pre-training is
used, though this is reduced when monophone pre-training is used.
It is not surprising that the difference between the systems is less in
this case, since one of the effects of the MLAN scheme is to leverage
much larger quantities of training data (in this case, 300 hours) via
the bottleneck features input to the final DNNs. .
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Fig. 3. WER (%) for baseline and multitask systems with and with-
out pre-training, varying the quantity of training data used

System Pretraining dev2010 tst2010 tst2011 mean
Baseline none 15.9 14.0 11.7 14.1
Baseline monophone 15.8 13.7 11.7 13.9
Multitask none 15.3 13.6 11.6 13.7
Multitask monophone 15.6 13.5 11.5 13.7

Table 4. WER (%) for MLAN systems, using speaker-adapted tan-
dem features from Switchboard DNNs

5. CONCLUSIONS

We have presented a simple, but effective of method of improving
the performance of context-dependent hybrid DNN systems through
the use of jointly optimising the classification performance of mono-
phone units. This acts as a regulariser, and, we believe, encourages
more relevant discrimination in the lower layers of the network. We
have shown that the proposed technique yields relative performance
improvements of 3%-10% over the baseline, depending on the quan-
tity of training data available, even when the baseline networks are
themselves initialised by finetuning to monophone targets.

In future, we will investigate the use of this technique with full-
sequence training, where the targets used in DNN optimisation are
more closely matched to the word error rate.
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