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Abstract

We have previously found that context-dependent DNN mod-
els for automatic speech recognition can be improved with the
use of monophone targets as a secondary task for the network.
This paper asks whether the improvements derive from the reg-
ularising effect of having a much small number of monophone
outputs – compared to the typical number of tied states – or
from the use of targets that are not tied to an arbitrary state-
clustering. We investigate the use of factorised targets for left
and right context, and targets motivated by articulatory proper-
ties of the phonemes. We present results on a large-vocabulary
lecture recognition task. Although the regularising effect of
monophones seems to be important, all schemes give substan-
tial improvements over the baseline single task system, even
though the cardinality of the outputs is relatively high.
Index Terms: deep neural networks, multitask learning, con-
text modelling

1. Introduction
Since the work of [1, 2], the use of clustered context-dependent
(CD) phone state targets has been standard when using deep
neural networks (DNNs) in a hybrid HMM configuration – that
is, using the DNN to directly generate state likelihoods for use
in an HMM-based decoder. The tied-state context-dependent
units (also known as senones) are typically derived from a clus-
tering obtained from a baseline GMM system, following the
standard approach of [3], although DNNs have recently been
used for this purpose [4, 5]. This state-tying is clearly impor-
tant to avoid data sparsity issues due to the very large number
of possible CD units.

Modelling tied-state CD units works well in practice, and
authors have found the performance insensitive to the number
of units [6, 7], in part due to the efficient sharing of parame-
ters across outputs in the deep-structured model . Modelling
CD units essentially yields a more powerful model that adjusts
the model of each phone to take account of its local acous-
tic context. However, we have argued that a disadvantage of
this approach is that when models are trained using the stan-
dard cross-entropy criterion, there is no distinction between tied
states of the same monophone and tied states of different mono-
phones: the DNN discriminates between each equally. Whilst
discrimination between monophones has direct benefit in de-
coding, discriminating between two senones of the same mono-
phone may yield only indirect benefits, and is determined only
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Figure 1: An example multitask network structure

by the somewhat arbitrary choice of state clustering. This prob-
lem was recognised in early work in neural network acoustic
modelling [8, 9, 10, 11, 12], where efforts were made to fac-
torise the context-dependent probabilities and model them with
independent nets. Given data xt, the probability of phone state
qk in left-context clj and right context crl is modelled according
to:
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where k indexes the set of phones and j, l index the set of con-
texts. Whilst this expression is exact, its severe limitation is that
the both phone and context labels from the decoding hypothe-
sis are used as inputs to the networks, rendering intractable the
forward pass computation during decoding. The solution pro-
posed in [9] – factorising the nets into separate structures for
each input, combining only at the final sigmoid layer – effec-
tively models the effect of context independently of the phone
target, a significant reduction in modelling power.

In our recent work [13] we proposed to use a multitask
DNN, illustrated in Figure 1 to jointly model tied-state CD tar-
gets and the context-independent (CI) monophone targets. Mul-
titask learning [14], in which a shared network structure is used
to learn complementary tasks, is known to improve generalisa-
tion by learning a better shared hidden representation for both
tasks. In this case, the use of monophone targets as a secondary
task aims to add weight to the form of discrimination that is
more relevant for decoding, without requiring the explicit fac-
torisation of Equation 1. It can also be seen as a smoothing
term based on a lower dimensional, simpler task. We found
that this structure gives substantial benefits – particularly when
training data is limited – over standard DNNs with generative
pre-training, and also DNNs initialised by training on mono-
phone targets.

In this paper we seek to better understand the benefits of
multitask learning in this setting. We question whether the ob-
served improvements derive from the use of a low-dimensional



secondary task reducing noise in the training signals; whether
the gains come from explicitly discriminating between mono-
phones; or whether the disadvantage of modelling tied-state CD
units is the arbitrariness of the labels used as targets for the
DNNs. To do this, we extend the framework to model alter-
native context-related tasks of varying dimensions, generating
alternative clustering schemes according to broad articulatory
properties of the context, explained in the following section.

2. Multitask for CD modelling
Multitask learning [14] is now a well-known technique in DNN-
based acoustic modelling. It found early application to noisy
ASR in [15]. More recently, it has been used for joint mod-
elling of triphone and trigrapheme units in [16], and for text-to-
speech [17]. Most closely related to the current work is [18],
where a variety of complementary tasks of small size were in-
vestigated to enhance context modelling of a monophone DNN.
However, this work differs substantially in that [18] conducted
experiments on the TIMIT corpus where the small quantities of
training data mean that monophone modelling is standard; in
contrast, we use a large-vocabulary ASR system trained on 10s
or 100s of hours of speech, we always use a large set of tied
state triphones as the primary task and can model much larger
related tasks.

We consider a task A as being a mapping from a set of T
training frames to a set of labels, that is:

A : {t : 1 ≤ t ≤ T} → {1, . . . , L}

t 7→ yA
t

(2)

We denote the cardinality of task A as LA. In what follows, we
use A to indicate the primary task – in the sense that these will
be the outputs of the network used at test time. We can define
the objective for task A by the negative cross-entropy

FA(θ) =
X

t

log p(yA
t |xt; θ) (3)

In learning task A, we maximise this objective function with
respect to the parameters θ. The optimisation is carried out with
stochastic gradient descent, computing the gradient with respect
to small mini-batches of training data, updating the parameters
with a small step size, and iterating over the complete set for
multiple epochs until the the convergence is reached on held-
out validation data. .

In multitask learning, we define an additional task B, gen-
erating a new labelling for the training frames, and obtain the
objective FB(θ). We alternate updates of the parameters ac-
cording to the objectives FA(θ) and FB(θ) at the minibatch
level . In a typical configuration, all parameters except those in
the output layers are shared, although it is possible for param-
eters in lower layers to influence only one task. An alternative
would be to optimise a joint objective λFA(θ)+(1−λ)FB(θ),
which would combine both tasks within a single minibatch.

Multitask learning is closely related to other methods pro-
posed for improving neural network generalisation: for exam-
ple, in curriculum learning [19] the network is trained on ini-
tially on a simple task B (in the sense of the distribution of yB

t

having low entropy), moving to the primary task A as the train-
ing proceeds. FB(θ) could also be viewed as KL-divergence
regularisation term in the manner of [20], with the effect of
moving p(y|xt; θ) closer to the empirical distribution defined
by yB

t .

[14] postulates a number of reasons for the observed suc-
cess of multitask learning. One is that the use of additional
tasks minimises the effect of noise in the error signals used
in backpropagation since they are effectively averaged across
tasks. We would expect this effect to be more pronounced when
the secondary task has low cardinality LB . A second is the no-
tion of eavesdropping – a hidden representation may may be
easily learnt for B but not for A, so sharing tasks allows A to
eavesdrop in the information from B. Specific to our problem
setting, as discussed in Section 1 is the issue that the primary
task may not necessarily be the ideal target to optimise, so in-
cluding diverse alternative targets may be beneficial. We have
explored three auxiliary tasks for the multitask learning of CD
models: context-independent phone modelling, phone context
modelling, and articulatory context modelling.

2.1. Context-independent tasks

The task we investigated previously was the predicting mono-
phone units [13]. Monophone targets have previously been used
as an initialisation of DNNs prior CD training [21], a form
of curriculum learning. In this work, for consistency with the
other tasks investigated, we instead use monophone state targets
yms

t = qt. The motivation for using context-independent targets
is twofold: firstly, the task has small size (Lms = 45×3 = 135)
so can be expected to have a strong regularising effect. Sec-
ondly, we expect that biasing the DNN towards monophone
states encourages discrimination more beneficial for recogni-
tion, over discrimination between different tied states of the
same monophone.

2.2. Phone context tasks

As the converse of using context-independent targets, we also
investigate using tasks related to the precise context, separating
by left and right context. By incorporating context explicitly
into the DNN outputs, we expect to achieve better modelling of
context-related effects in the input features, helped by the use of
wide frame context in the inputs, as is standard for hybrid DNN
systems. The two tasks are respectively defined by the tuples of
left and right phone contexts along with the target phone state:

ylc
t = (cl, qt)

yrc
t = (cr, qt)

(4)

Note that we model the effects of context on specific target CI
phone state, in contrast to the approach of [18]. This results
in task sizes Llc = Lrc = 5943, similar to the size of the pri-
mary CD task. This is better matched to the standard clustering
approach in large-vocabulary ASR.

2.3. Articulatory context tasks

The method of detecting articulatory features in speech has been
well-studied [22, 23]. Rather than considering phonemes as
atomic units, an articulatory-based classification scheme char-
acterises a phoneme according to a series of articulatory cate-
gories: place and manner of articulation, voicedness and so on.
Our use of these features to define context tasks is motivated
by the recent work of [24], where single neural networks were
used to predict CD units clustered according to a range of artic-
ulatory features and later combined with a regression model to
generate probabilities for unseen triphones.

The opportunity to factorise the multiple articulatory prop-
erties of each phoneme across tasks represents an attractive ap-
plication of multitask learning, allowing data sharing between



Table 1: Articulatory features

Feature Categories
Place front vowel, central vowel, back vowel,

coronal, palatal, labial, velar
Manner high vowel, mid vowel, low vowel, fricative,

nasal, stop cons, approximant
Voicedness voiced, unvoiced
Miscellaneous short vowel, long vowel, diphthong,

retroflex, afficate, alveolar, constituent,
non-constituent

different context phonemes. It has previously found to be ben-
eficial in modelling CI units on the TIMIT database [25]. We
adopt a similar classification scheme to that in [24], summarised
in Table 1. The silence phoneme has its own category in all
tasks.

For each feature, we define a left and right context task
analogously to the phoneme context tasks in Section 2.2, giving
eight tasks in all. If fi(c), i ∈ {1, . . . 4} defines the ith feature
for phoneme c , the tasks for feature i are given by the tuples
(fi(c

l), qt), (fi(c
r), qt). This scheme has two potential bene-

fits: firstly, through the factorisation of phonemes into features
we reduce the maximum cardinality of a task to 1455; secondly,
we have effectively generated eight different context-clustering
schemes, rather than the single scheme used in standard tri-
phone clustering, allowing us to investigate whether using the
fixed arbitrary clustering is indeed damaging to performance,
as hypothesised.

3. Methodology
3.1. ASR task

As in previous work, we carried out experiments on the de-
velopment sets of the TED English transcription task from the
IWSLT Evaluation [26]. The data consists of single-speaker
talks of around 10 minutes’ duration. We present results on 27
pre-segmented talks, combining the dev2010, tst2010 and
tst2011 sets. All experiments use a trigram language model
trained on a corpus of TED talks, and the Europarl, News Crawl
and Gigaword corpora, following the IWSLT rules.

For acoustic training data, we used subsets of our full train-
ing corpus of 813 TED talks, yielding 131 hours of speech seg-
ments after holding out validation data. We also investigated
the performance of models trained on data totalling 65 hours of
speech segments and a 26 hours, respectively 50% and 20% of
the complete training set. The reduced training set sizes were
chosen partly to reduce experiment turnaround time, and partly
to better highlight the difference between methods, since we
previously observed that the benefits of multitask learning di-
minish as the quantity of training data increases [13]. The use
of two sizes of training set allows us compare the robustness
to limited training data of the different tasks investigated. The
validation data was fixed for all sizes of training set.

3.2. Baseline system

As acoustic features, we used 13 perceptual linear prediction
(PLP) coefficients with first and second order deltas. An mono-
phone HMM-GMM system trained on these features was used
to obtain a state-clustering of context-dependent phone units,
and subsequently a GMM modelling these tied states. We used

approximately 6,000 tied states with 16 Gaussians per state.
The final GMM system was used to assign a frame-level phone
alignment of the training data – which was fixed in all DNN ex-
periments – and also to estimate a single constrained maximum
likelihood linear regression (CMLLR) transform for each train-
ing speaker, which were used to generate speaker-normalised
input features for the DNNs. At test time, equivalent transfor-
mations were estimated for each speaker using a first-pass de-
code with the speaker-independent GMM system.

All DNNs were trained to generate posterior probabilities
over the labels for the target tasks by using backpropagation
over the full structure to optimise the framewise cross-entropy
criterion shown in Equation 3 with respect to the relevant task.
In the baseline case, the DNN was used to purely to generate
posterior probabilities over the 6,000 tied state targets. In all
subsequent experiments, we fixed the primary task to be the
same as the baseline, so that all multitask DNNs had one of the
task predicting the 6,000 posterior probabilities. These outputs
were the only ones used at test time, scaled by state prior prob-
abilities to produce pseudo log likelihoods for use in hybrid-
HMM decoding.

All DNNs used 6 hidden layers with 2048 units per layer.
The hidden layers use logistic sigmoid non-linearities, with a
softmax function at the output layer. For input features, we
used the speaker-normalised PLP features in a 9-frame window
(±4 frames of context). Training was performed on NVIDIA
GeForce GTX 690 GPUs using an in-house tool based on the
Theano library [27].

In our previous work [13] we carried out experiments to
determine the gain from multitask training with different DNN
initialisation schemes. We found that there were generally no
consistent benefits to using either generative pre-training with
RBMs [28] or monophone pre-training [21]. In this work, to
reduce the set of experimental combinations, we elected to use
a simple random initialisation.

3.3. Multitask DNN training

Multitask DNNs were trained in a similar manner to the base-
line single-task DNNs. In our implementation, task updates
with stochastic gradient descent are alternated at the mini-batch
level. When there are more than two tasks, updates for tasks are
performed in rotation. Except for the output layer weights, all
parameters are shared between all tasks, and every iteration of
backpropagation updates all shared parameters. Training data is
shuffled differently for each task, so that successive updates do
not cause implicit learning of between-task correlations.

The learning rate is of course, an important tuning param-
eter. Given the number of configurations and tasks, it was not
possible to exhaustively optimise the learning rates for each task
independently. However, we had previously experimentally op-
timised the learning rate schedules for single-task DNNs: to be-
gin with, we applied the same recipe, obtaining the learning rate
for a single task by dividing the single-task learning rate by the
number of tasks, thus keeping the effective learning rate over a
complete epoch the same as the baseline. A problem with this
approach is that it reduces the weight of the primary task as the
number of tasks increases; we therefore investigated an alterna-
tive where the learning rate of the primary task was fixed at half
the single task rate, sharing the remaining weight between the
secondary tasks. In this scheme the updates from the primary
task are the same in all cases as when there are two tasks.

In all experiments, learning rates were reduced indepen-
dently for each task using the “newbob” schedule, measuring



the performance of the net on the task in question using frame
error rate on the validation data.

4. Results
We present results on systems trained with the complementary
tasks described in Section 2, comparing the performance with a
standard single-task DNN trained purely to predict CD targets.
Table 2 summarises the task configurations: “ms” indicates the
task of predicting monophone states; “lc/rc” is the two tasks
of predicting the monophone state jointly with the left or right
phonetic context; “AF” denotes the task where the left or right
context is decomposed according to four articulatory features.

Figure 2 shows the change in performance of baseline and
multitask methods with varying quantities of training data. We
observe that the same trends reported in our previous work con-
tinue to hold: all multitask methods outperform the single task
baseline. As expected, the effect is most pronounced when the
quantity of training data is smaller, confirming that the use of
multitask learning has the effect of improving the generalisa-
tion of the DNN. More interestingly, this effect occurs not only
in the situation where the secondary task has a small size – the
same trends are observed when the secondary tasks are almost
as large as the primary CD task. This suggests that the regular-
ising effect is not simply due to the secondary task acting as a
low-dimensional prior.

We give more detailed experimental results in Table 3. In
addition to the three standard multitask setups, we also inves-
tigated adding the smaller monophone state task as an addi-
tion to the context related tasks (labelled “+ms”). Systems with
the task of predicting state clustered units based only on either
the left or right contexts performs similarly to those using the
monophone state task. This implies that the role of the sec-
ondary tasks in preventing over-fitting of the DNN to CD targets
from a single state clustering is an important one. However, in
the smallest data case, there were additional benefits to adding
the monophone state task as a fourth task for the DNN, which
may be due to the smoothing effect of the smaller task.

In the final section of the table, the use of multiple alterna-
tive left/right clusterings based on articulatory features also re-
sults in substantial improvements over the baseline, supporting
the conclusions above. However, these systems do not gener-
ally perform as well as the other two schemes. We speculated
that this may be because the much larger total number of tasks
prevents good convergence on the primary task: the decrease
in performance caused by further adding the monophone state
task would seem to support this. To investigate this theory, we
carried out further experiments, assigning half the single task
learning rate to the primary CD task as discussed in Section 3.3.
This reduced WER from 18.1% to 17.3% and from 16.1% to
15.8% on the 26-hour and 65-hour training sets respectively,
supporting the hypothesis.

Table 2: Multitask configurations

System # Tasks Task cardinalities
Baseline CD 1 6000
Multi ms 2 6000, 135
Multi lc/rc 3 6000, 5943×2
+ms 4 +135
Multi AF 9 6000, 1059×2, 1059×2, 399×2, 1455×2
+ms 10 +135

20 40 60 80 100 120 140
14

15

16

17

18

19

20

21

Quantity of training data (hrs)

W
E

R
 (

%
)

 

 

baseline

multi ms

multi AF

multi lc/rc

Figure 2: Results with varying quantities of training data

Table 3: Results of multitask systems (WER%) on the TED task
for varying quantities of training data

System 26 hrs 65 hrs 131 hrs
Baseline DNN 20.3 17.8 15.1
Multitask ms 17.5 16.1 14.6
Multitask lc/rc 17.6 15.6 14.5
+ ms 17.3 15.7 -
Multitask AF 17.9 15.9 14.8
+ ms 18.1 16.1 -

5. Conclusions
We have shown that multitask learning with alternative context-
related targets is an effective method for improving the per-
formance of hybrid DNN large-vocabulary ASR systems. The
benefits are most pronounced when training data is scarce, but
continue to hold for relatively large quantities. Further, we have
shown that an important part of the effect is the manner in which
multitask learning can reduce over-fitting to a single clustering
of context dependent units used as targets in DNN training. We
found that factorising the full triphone into left and right context
tasks is as effective as using a single secondary task based on
monophones – with both outperforming a standard DNN sys-
tem. Both schemes help the DNN avoid learning discrimina-
tions which may not be beneficial when used in decoding.

We also found that splitting triphone contexts according to
articulatory features outperforms a standard single task DNN.
When more tasks are used, choosing appropriate learning rates
becomes more difficult, and more work is needed. In future
work, we intend to use combine the outputs from multiple tasks
in a single decoding framework, hopefully allowing us to gen-
erate more accurate likelihoods over untied triphones, including
those unseen or rarely seen in training data. The use of multi-
ple tasks in our proposed framework also suggests the option to
retrain or adapt the DNNs using specific tasks, perhaps selected
according to the quantity of data available for this purpose.
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