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ABSTRACT

Deep neural networks (DNNs) use a cascade of hidden representa-
tions to enable the learning of complex mappings from input to out-
put features. They are able to learn the complex mapping from text-
based linguistic features to speech acoustic features, and so perform
text-to-speech synthesis. Recent results suggest that DNNs can pro-
duce more natural synthetic speech than conventional HMM-based
statistical parametric systems. In this paper, we show that the hidden
representation used within a DNN can be improved through the use
of Multi-Task Learning, and that stacking multiple frames of hid-
den layer activations (stacked bottleneck features) also leads to im-
provements. Experimental results confirmed the effectiveness of the
proposed methods, and in listening tests we find that stacked bottle-
neck features in particular offer a significant improvement over both
a baseline DNN and a benchmark HMM system.

Index Terms— Speech synthesis, acoustic model, multi-task
learning, deep neural network, bottleneck feature

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) has made significant
advances in naturalness [1] and is generally highly-intelligible [2].
However even though it offers greater flexibility and controllability
than unit selection [3], the naturalness of speech generated by SPSS
is still below that of human speech, and cannot compete with good
unit selection systems. Zen et al. [1] suggest various factors which
limit naturalness or quality. One of the key issues they highlight is
the core of the system: the acoustic model, which learns the complex
relationship between the linguistic representation (derived from text)
and acoustic features. In this paper we propose some techniques to
improve acoustic modelling, which result in improvements to syn-
thesised speech quality.

1.1. Relation to prior work

Significant efforts have been made to improve the acoustic models
for SPSS, targeting the underlying model, the way the parameters
are estimated during training, or the method for generating speech
parameter trajectories when performing synthesis: minimum gener-
ation error training for HMM [4], global variance enhancement [5],
and trajectory hidden Markov model [6], just to name a few exam-
ples.

More recently, neural networks have re-emerged as a potential
acoustic model for SPSS [7, 8, 9, 10, 11] following their success in
speech recognition [12]. Two weaknesses in HMM-based SPSS are
the density function over the acoustic features (usually a Gaussian)
and the decision-tree driven parameterisation of the model, in which
parameters must be shared across groups of linguistic contexts.

Deep neural networks (DNNs) have the potential to address
both areas. They can been viewed as a replacement for the decision

tree in [7, 10, 11] while in [8] a deep belief network (DBN) was
employed to jointly model the relationship between linguistic and
acoustic features. These approaches map linguistic features directly
to the corresponding acoustic features through multiple layers of
hidden representations, frame by frame. In [9], restricted Boltz-
mann machines (RBMs) were used to replace Gaussian mixture
models over the acoustic features, allowing more spectral detail to
be learned, which resulted in better speech quality. We can identify
at least two problems in the way DNNs are currently applied to
speech synthesis: perceptual suboptimality and frame-by-frame in-
dependence. These two problems are also common in conventional
HMM-based acoustic models.

1.2. The novelty of this work

The first problem – perceptual suboptimality – arises because the
training criterion typically aims to maximise the likelihood of (or
minimise the error to) acoustic features which are a rather poor rep-
resentation of human speech perception. Unless the error is reduced
all the way to zero, the error in the speech feature space is not an ac-
curate reflection of expected perceptual error. The choice of speech
features is constrained by the requirements of the vocoder: it must
be invertible, i.e. allow for reconstruction. This rules out the use of
many interesting and powerful perceptual representations of speech
which – from the point of view of maximising the perceived quality
of system output – would otherwise be very attractive.

To get around this, we use multi-task learning (MTL) [13] in a
DNN. The DNN learns to predict a perceptual representation of the
target speech as a secondary task, in parallel to learning to predict
the usual invertible vocoder parameters as the main task. The pre-
dictions of the perceptual representation are discarded at synthesis
time; rather, their purpose is to provide additional supervision dur-
ing training and to ‘steer’ the hidden layers of the network towards a
perceptually salient representation.

The second problem – frame-by-frame independence – arises in
many SPSS systems where predicted values for consecutive acoustic
states or frames are conditionally independent of one another given
their linguistic contexts. Although the maximum likelihood param-
eter generation (MLPG) algorithm uses dynamic features to smooth
acoustic feature trajectories, a framewise independence assumption
remains in the underlying model. There are DNN architectures that
model sequences of data, such as Recurrent Neural Networks which
have been applied to speech synthesis [14], but they can be diffi-
cult or computationally expensive to optimise. As a much simpler,
but still highly-effective alternative, we propose bottleneck feature
stacking. We train a first DNN with a bottleneck (i.e., relatively
small number of units) hidden layer. The activations of the bot-
tleneck units yield a compact representation of both acoustic and
linguistic information for each frame independently. Then, we stack
multiple consecutive frames of bottleneck features to produce a wide
context around the current frame, combine these with the linguistic



features, and use this as input to a second DNN.

2. PROPOSED MULTI-TASK DNN WITH STACKED
BOTTLENECK FEATURES

DNN-based speech synthesis involves two stages: offline training
and runtime synthesis. During offline training, linguistic features are
derived from text and aligned with acoustic features. This alignment
is typically obtained by forced-alignment against a HMM-GMM
acoustic model and can be at phone or HMM-state level. The DNN
then learns the relationship between the linguistic and acoustic fea-
tures. At runtime, phone or state durations are predicted and the
linguistic features for each frame are mapped to vocoder parame-
ters, which are then passed to a synthesis filter to reconstruct the
speech.

There are two particular problems in this arrangement that we
address here. First, the optimisation criterion is to minimise the
difference between predicted and reference vocoder parameters. If
these parameters are not monotonically correlated with perception,
the synthesised speech will be perceptually suboptimal. Second, al-
though the linguistic features contain wide context, the mapping is
still learned frame by frame without access to any acoustic context.

2.1. Multi-task learning

Multi-task learning (MTL) is a way to train a ‘universal’ model for
several different but related tasks using a shared representation [13].
Usually, there is one main task and one or more secondary tasks. It is
generally believed that the model learned in the multi-task learning
fashion can generalise better and make more accurate predictions
than a model for a single task, provided that the secondary task(s) are
related to the main task and at the same time complementary (i.e., not
identical) [13]. MTL has produced good results in automatic speech
recognition [15] and natural language processing [16], for example.

When using MTL with a DNN, the main task and the secondary
tasks share the same hidden representations, as illustrated in Fig. 1.
For speech synthesis, the main task is to predict vocoder parameters,
while the secondary task could be to predict a perceptual representa-
tion of the same speech. Conveniently, a MTL DNN is learned using
exactly the same optimisation techniques as a single-task DNN: im-
plementation is trivial.

2.2. Stacked bottleneck features

In DNN or MTLDNN, the acoustic features for each frame are pre-
dicted independently without any acoustic contextual constraints.
Although the maximum likelihood parameter generation (MLPG)
algorithm [17] can be used to impose dynamic constraints and so
obtain smooth parameter trajectories, long-term context is still ig-
nored and is not explicitly modelled by the DNN. We propose the
use of bottleneck features as a compact, learned representation, and
to stack multiple frames of them to provide wide linguistic-acoustic
contextual information.

The bottleneck features are simply vectors consisting of the ac-
tivations at a bottleneck layer, which has a relatively small number
of hidden units compared to the other hidden layers in the network.
Bottleneck features have been extensively used in speech recogni-
tion [18, 19, 20]. The left network in Fig. 2 is an example of a
network with a bottleneck layer. In the example, the left network
has four layers, of which the third layer is the bottleneck layer. Note
that either a DNN or MTLDNN can have a bottleneck layer and so be
used to produce bottleneck features for use by a subsequent network.
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Fig. 1. A multi-task deep neural network (MTLDNN). In a
MTLDNN, the main task and the secondary task share the same hid-
den representations (i.e., hidden layer activations). The optimisation
criterion is to minimise the mean square error on both tasks. xt, yt

and zt are the linguistic input, main task and secondary task, respec-
tively, at frame t. hk is the kth hidden layer

We might hope that the MTLDNN will produce superior bottleneck
features because of the additional supervision provided by the sec-
ondary task.
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Fig. 2. Multi-task deep neural network (MTLDNN) with stacked
bottleneck features. In this example, the bottleneck features for three
consecutive frames are stacked as input to the second network. In
practice, more than three frames can be included. h

′
t,3 is the vector

of bottleneck feature for the tth frame.

Multiple frames of bottleneck features are stacked together, then
used alongside the linguistic features as inputs to another DNN or
MTLDNN, this time with no bottleneck layer. Because the dimen-
sionality of the bottleneck features is low, stacking multiple frames
does not increase complexity significantly. Figure 2 illustrates the
proposed bottleneck feature stacking method, which proceeds as fol-
lows:

(a) Train the first DNN or MTLDNN, which contains a bottle-
neck layer;

(b) Make a forward pass through this network to generate bot-
tleneck features for the training, development and evaluation
data, frame by frame;

(c) Stack bottleneck features from several consecutive frames
around the current frame alongside the linguistic features;



(d) Train the second DNN or MTLDNN using as input the fea-
tures constructed in step (c);

(e) Make a forward pass using the development and evaluation
data to generate acoustic features (the main task) from the
second DNN or MTLDNN

In this work, the last but one layer was the bottleneck layer, which is
the usual setting in speech recognition [20].

3. EXPERIMENTS
3.1. Experimental setups

A speech database from a British male speaker was used in the
experiments, comprising 2542 utterances: 2400 utterances as train-
ing set, 70 utterances as development set, and 72 utterances for
evaluation. The sampling rate of the speech data was 48 kHz.
STRAIGHT [21] was used to extract 60-dimensional Mel-Cepstral
Coefficients (MCCs), 25 band aperiodicities (BAPs) and logarith-
mic fundamental frequency (log F0) at 5 msec frame intervals. For
the MTLDNNs, we experimented with various secondary tasks:
formant centre frequencies (F1-F4)1, 40-dimensional line spectral
frequencies (LSF), 64-dimensional Gammatone spectrum [22], or
55-dimensional spectro-temporal excitation pattern (STEP) repre-
sentation features were extracted at the same frame rate as MCCs.
The STEP feature was derived from the Glimpse Proportion measure
for speech intelligibility in noise that was proposed in the context of
the Glimpse model for speech perception in noise [23].

For comparison, an HMM system was trained on the same
data, employing five-state, left-to-right hidden semi-Markov models
(HSMM). The MCCs and BAPs with deltas and delta-deltas ap-
pended were modelled by single-component Gaussians, and log F0

with delta and delta-delta was modelled by a 3-dimension multi-
space probability distribution (MSD). Decision tree state clustering
used a minimum description length (MDL) factor of 1.0. During
parameter generation, global variance (GV) enhancement was ap-
plied2. The publicly available HTS toolkit3 was used to implement
the baseline HMM system.

In the DNN-based systems, the input features consisted of
592 binary features and 9 numerical features. The binary features
were derived from a subset of the questions used by the decision
tree clustering in the HMM system, and included linguistic con-
texts such as quinphone identity, and part-of-speech, positional
information within the syllable, word and phrase, and so on. 9
numerical features were appended: the frame position within the
HMM state and phoneme, the state position within the phoneme,
and state and phoneme durations. Frame-aligned training data for
the DNN was created by forced alignment using the HMM system
described above. The main task DNN outputs comprised MCCs,
BAPs and continuous log F0 (all with deltas and delta-deltas) plus
a voiced/unvoiced binary value. In the MTLDNN systems, a sec-
ondary task was added, but dynamic features were not used for the
secondary tasks. Input features were normalised to the range of
[0.01, 0.99] and output features were normalised to zero mean and
unit variance. MLPG using pre-computed variances from the train-
ing data was applied to the main task output features, and spectral
enhancement post-filtering was applied to the MCCs4.

1Praat (http://www.fon.hum.uva.nl/praat/) was used to extract formants.
2GV enhancement was not used when computing the objective results.
3http://hts.sp.nitech.ac.jp/
4The Speech Signal Processing Toolkit (SPTK) was used, which is avail-

able at: http://sp-tk.sourceforge.net/

In both DNN and MTLDNN, the tangent or tanh function was
used as the hidden activation function, and a linear activation func-
tion was employed at the output layer. During training, L2 regulari-
sation was applied on the weights with penalty factor of 0.00001, the
mini-batch size was set to 256 and momentum was used. For the first
10 epochs, momentum was 0.3 with a fixed learning rate of 0.002.
After 10 epochs, the momentum was increased to 0.9 and from that
point on the learning rate was halved at each epoch. The learning
rate of the top two layers was half that of other layers. The maximum
epochs was set to 25 (early stoping). For software implementation,
we used Theano version 0.6 [24] and training was conducted on a
GPU.

3.2. Objective results

We first conducted objective evaluations to assess the performance
of the proposed methods. We know that these are unlikely to cor-
respond directly to perceived quality, but they are necessary when
tuning the systems (e.g., selecting the learning rate, etc). Results
are presented in Table 1. Across all acoustic parameters, the DNN
makes more accurate predictions that the HMM. In particular, the
MCD of HMM is reduced from 4.56 dB to 4.17 dB, and the V/UV
error rate is reduced from 5.92 % to 4.24 %. These objective results
are consistent with results in the literature [7, 25, 11].

After establishing the DNN baseline, we then assessed the ef-
fectiveness of multi-task learning. Across the four different sec-
ondary tasks that we tried, only LSF was an invertible feature, while
formants, Gammatone spectra and STEP features cannot readily be
used to generate speech. All tasks decreased MCD and V/UV error
rates, even the formant task, the extraction of which is not accurate.
The STEP features, which relate to speech perception, showed the
most promise.

Next, we evaluated the performance of DNN or MTLDNN with
stacked bottleneck features. The bottleneck layer was always the last
layer but one and always had 128 hidden units. The performance
of the bottleneck network alone is generally slightly worse than the
equivalent standard network, simply due to the small size of the bot-
tleneck layer, and is to be expected. However, stacking these features
and training a second network produces improvements in all cases.

As we increase the number of stacked frames, MCD drops from
4.17 dB for 1-frame context to 4.12 dB for 9-frame context. Other
objective results also improved: V/VU error dropped from 4.19 %
with 1-frame context to 3.91 % with 9-frame context. Stacking bot-
tleneck features is quite effective.

Finally, we combined MTLDNN and bottleneck feature stacking
and saw further improvements in the objective results, except that
F0 error increased. Recall that our hope is that multi-task learning
leads to more informative bottleneck features and so should provide
further improvements when those features are stacked.

3.3. Subjective results

We conducted subjective evaluations to assess the naturalness of the
synthesised speech using a MUSHRA (MUltiple Stimuli with Hid-
den Reference and Anchor) test, which allowed us to evaluate mul-
tiple samples in a single trial without breaking the task into many
pairwise comparisons. We evaluated nine systems: the benchmark
HMM with global variance enhancement (HMM-GV), the baseline
DNN, MTLDNN with four different secondary tasks, DNN-DNN
and MTLDNN-MTLDNN5. Note that 9-frame context was used in
DNN-DNN and MTLDNN-MTLDNN.

5Samples are available at: http://homepages.inf.ed.ac.uk/
zwu2/dnn_tts/demo.html



Table 1. Objective results for the baseline HMM, DNN, proposed MTLDNN and DNN with stacked bottleneck features. Here, DNN-DNN
means the first network (used to extract bottleneck features) is a single-task DNN, and the second network is also a normal DNN. Root mean
squared error (RMSE) of F0 was computed in linear frequency. V/UV error means frame-level voiced/unvoiced error. MCD and BAP are the
Mel Cepstral Distortion and BAP error, respectively.

Secondary Contextual size of MCD BAP F0 V/UV error
feature Architecture Bottleneck features (dB) (dB) RMSE (Hz) rate (%)

HMM n/a 1 mix n/a 4.56 2.06 9.90 5.92
DNN n/a 6*1024 n/a 4.17 1.96 9.34 4.24

MTLDNN

Gammatone 6*1024 n/a 4.14 1.96 9.53 4.13
Formants 6*1024 n/a 4.17 1.96 9.46 4.09
LSF 6*1024 n/a 4.15 1.96 9.54 4.19
STEP 6*1024 n/a 4.12 1.96 9.52 4.09

MTLDNN STEP 5*1024+128 n/a 4.22 1.97 9.89 4.13
DNN n/a 5*1024+128 n/a 4.27 1.97 9.31 4.24
DNN-DNN n/a 6*1024 1 4.17 1.96 9.54 4.19
DNN-DNN n/a 6*1024 3 4.14 1.95 9.27 4.04
DNN-DNN n/a 6*1024 5 4.15 1.95 9.24 4.05
DNN-DNN n/a 6*1024 7 4.14 1.95 9.35 4.00
DNN-DNN n/a 6*1024 9 4.12 1.94 9.23 3.91
DNN-MTLDNN STEP 6*1024 9 4.08 1.94 9.23 3.89
MTLDNN-DNN STEP 6*1024 9 4.10 1.94 9.65 3.92
MTLDNN-MTLDNN STEP 6*1024 9 4.08 1.94 9.66 3.82

15 native English listeners with no reported hearing difficulties
participated in the MUSHRA test. Each listener rated 20 sets which
were randomly selected from the 72 evaluation utterances. Each set
included 10 stimuli of the same sentence generated by each of the
nine systems plus the natural speech used as the hidden reference.
The listeners were asked to rate each stimulus from 0 (extremely
bad) to 100 (perfect: same as the reference natural speech), and they
were also instructed to give exactly one of the 10 stimuli in every
set a rating of 100. From the complete test, we obtained 300 sets of
scores. By excluding one set of scores, in which the hidden reference
was not rated at 100, we had 299 sets for further analysis.

The MUSHRA scores for all the systems are presented in Fig. 3.
It can be seen that all the DNN-based systems outperform the HMM
system significantly. Due to the large variability across listeners and
stimuli, the differences between DNN-based systems is not as clear.
However, the MUSHRA design allows us to use paired t-tests to
identify significant differences between all pairs of systems.
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Fig. 3. MUSHRA results with 95 % confidence interval. The score
for the natural speech is not included: it is always 100.

We performed paired t-tests (95 % confidence level) on the

MUSHRA scores between two different DNN-based systems for
further analysis. Although MTLDNN with the STEP feature scores
higher than the baseline DNN, the difference is not significant.
Similarly, the differences between the baseline DNN and other
MTLDNNs are also not significant.

However, both bottleneck feature stacking methods, DNN-DNN
and MTLDNN-MTLDNN, are significantly better than all other sys-
tems, (although the difference between DNN-DNN and MTLDNN-
MTLDNN is not significant).

4. CONCLUSIONS

We have proposed the use of multi-task learning in DNN-based
speech synthesis as simple and convenient way to provide additional
supervision during training. It also allows the use of perceptually-
salient, but unfortunately non-invertible, representations of speech.
Objective results suggest that several different secondary tasks are
all helpful, and that the perceptual representation (STEP) is the most
promising. To provide additional context, we also propose the use
of stacked bottleneck features. Again, objective measures suggest
that these are quite effective.

Listening test results suggest some improvements yielded by
multi-task learning, but significant improvements were not observed
in the subjective evaluation. The results also demonstrate that stack-
ing bottleneck features does lead to statistically significant improve-
ments in naturalness.

The selection of the secondary task is important, and it affects
the performance of the main task. In follow-up work, we will con-
tinue to experiment with other secondary tasks, and to discover
whether multi-task learning and bottleneck feature stacking can be
effectively combined.
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