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ABSTRACT
This paper presents the first version of a speaker verification spoof-
ing and anti-spoofing database, named SAS corpus. The corpus in-
cludes nine spoofing techniques, two of which are speech synthesis,
and seven are voice conversion. We design two protocols, one for
standard speaker verification evaluation, and the other for producing
spoofing materials. Hence, they allow the speech synthesis com-
munity to produce spoofing materials incrementally without knowl-
edge of speaker verification spoofing and anti-spoofing. To provide a
set of preliminary results, we conducted speaker verification experi-
ments using two state-of-the-art systems. Without any anti-spoofing
techniques, the two systems are extremely vulnerable to the spoofing
attacks implemented in our SAS corpus.

Index Terms— Database, speaker verification, spoofing attack,
security, speech synthesis, voice conversion

1. INTRODUCTION

In the past decade or so, automatic speaker verification (ASV) tech-
nology has advanced significantly, to the point of mass market adop-
tion [1]. A major concern when deploying an ASV system is whether
the system is secure against spoofing attacks. Recently, an increas-
ing number of studies have assessed the vulnerability of ASV sys-
tems to various forms of spoofing attacks [2, 3, 4], including imper-
sonation [5, 6], replay [7], speech synthesis [8, 9] and voice con-
version [10, 11, 12, 13, 14]. Efforts have also been made to de-
velop individual countermeasures to protect ASV systems against
specific spoofing attacks. However, the lack of a standard spoofing
database is holding back the development of more general counter-
measures [15, 2].

In the literature, we find that the design of a spoofing database
depends very much on the particular spoofing approach assumed
in each specific study, and this has resulted in a diverse set of
individual spoofing databases, none of which is helpful for de-
veloping generalised countermeasures. In [5], an impersonation
database was designed based on the YOHO speaker verifica-
tion database [16], whereas the authors in [6] designed a small
impersonation database in Finnish independently of any prior
database. For speech synthesis-based spoofing [8, 9], the publicly-
available Wall Street Journal (WSJ) database has been employed
to generate spoofing materials. The clean recording conditions
of WSJ enable advanced speech synthesis techniques to be ap-
plied. Conversely, standard NIST speaker recognition evaluation
(SRE) databases have been used to construct voice conversion-based
spoofing databases [10, 11, 12, 17]. The NIST databases include
channel noise, which present substantial challenges to the more

advanced forms of speech synthesis or voice conversion. In [14],
a non-publicly available database was employed to design a voice
conversion spoofing database for text-dependent speaker verifica-
tion. As we can see, all of the databases we can find are focused on
one specific variety of spoofing. This makes comparisons across dif-
ferent spoofing approaches difficult (e.g., is voice conversion better
than state-of-the-art speech synthesis?), and generalised counter-
measures (e.g., the detection of non-human speech) cannot readily
be developed or evaluated using these databases.

There are a few attempts to design spoofing databases involv-
ing multiple varieties of spoofing attacks. In [7, 18], a spoofing
database was designed based on RSR2015 [19] including both replay
and voice conversion attacks. However, only a simple voice conver-
sion technique was used. In [17], voice conversion, speech synthesis
and artificial signal spoofing approaches were implemented on the
NIST 2006 subset. However, only one voice conversion and one
speech synthesis approach was employed, and only male speakers
were included. No standard spoofing database exists that includes a
diverse variety of spoofing techniques. Such a database is needed for
conducting repeatable and comparable spoofing attack studies and to
drive the development of generalised countermeasures that are effec-
tive across a wide variety of spoofing methods.

The ideal standard spoofing database should include all avail-
able spoofing approaches. As pointed out in [15, 3], a publicly avail-
able spoofing database and a competitive challenge based on such a
common database are needed for spoofing and countermeasure (also
known as anti-spoofing) research.

In this paper, we report our progress in developing such a stan-
dard spoofing and anti-spoofing database involving multiple varieties
of spoofing attacks, for both text-dependent and text-independent
scenarios. We present the current spoofing and anti-spoofing (SAS)
database – that is the SAS corpus – and a preliminary set of bench-
mark results, for text-independent ASV. The database includes both
speech synthesis and voice conversion spoofing attacks, which are
two of the most accessible and effective spoofing approaches cur-
rently available [2, 3]. To improve the diversity of the data (and
therefore the generalisation ability of countermeasures developed us-
ing it), we employed one speech synthesis techniques in two training
scenarios and seven voice conversion techniques in one training sce-
nario. We use state-of-the-art statistical parametric speech synthesis
to implement speech synthesis spoofing, while the voice conversion
spoofing sets were created using one publicly-available open-source
toolkit and six state-of-the-art conversion techniques.

To the best of our knowledge, this is the first attempt to include
such a diverse range of spoofing attacks in a single database. The
SAS corpus will be publicly available at no cost and we welcome



additions to it from other researchers.1 In this paper, we present
benchmark results when attacking two state-of-the-art speaker veri-
fication systems.

2. PROTOCOL

The SAS spoofing database starts with the Voice Cloning Toolkit
(VCTK) database2 from the Centre for Speech Technology Research
(CSTR), which is English and freely available. The VCTK database
was recorded in a hemi-anechoic chamber using an omni-directional
head-mounted microphone (DPA 4035) at a sampling rate of 96 kHz.
The motivation for starting with clean studio-recorded speech is that
it allows for spoofing attacks that rely on such data. Channel and
noise factors can always be simulated at a later date, but in this paper
we focus only on spoofing under clean conditions.

To design the spoofing database, we took speech data from
VCTK which comprises 45 male and 61 female speakers, and
downsampled the signals to 16 kHz at 16 bits-per-sample. We also
divided the data from each speaker into five parts:

• Part-A: 24 parallel utterances (i.e., same across all speakers)
per speaker: training data for spoofing.

• Part-B: 20 non-parallel utterances per speaker: additional
training for spoofing.

• Part-C: 50 non-parallel utterances per speaker: enrolment
data for client model training in speaker verification.

• Part-D: 100 non-parallel per speaker: development set for
speaker verification.

• Part-E: Around 200 non-parallel utterances per speaker:
evaluation set for speaker verification.

We note that in Part-C, Part-D, and Part-E, all the sentences are
randomly selected from newspapers without any repeating sentence
across all speakers.

2.1. Speaker verification enrolment and evaluation

We first introduce the protocol for standard speaker verification eval-
uation. The enrolment data of each client was selected from Part-C
under two scenarios: 5-utterance or 50-utterance enrolments. For 5
utterances this means around 5 to 6 seconds, and for 50 utterances
around 1 minute of speech material.

The development set was created from Part-D. It involves gen-
uine trials and impostor trials. All utterances from a client speaker
in Part-D were used as genuine trials, and this results in 4500 male
and 6100 female genuine trials. For the impostor trials, 10 randomly
selected non-target speakers were used as impostors. All Part-D ut-
terances from a specific impostor were used as impostor trials against
the client’s model, leading to 45000 male and 61000 female impostor
trials. This set is aimed at tuning the system and deciding thresholds.

The evaluation is drawn from Part-E. In a similarly fashion to the
development set, we generated 9446 male and 13385 female genuine
trials, and 85592 male and 118000 female impostor trials. This set
is for assessing the performance of speaker verification systems. A
summary of the development and evaluation sets is shown in Table 1.

1SAS is being released under a Creative Commons licence. More details
are available here: https://wiki.inf.ed.ac.uk/CSTR/SASCorpus

2http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html

Table 1. Number of trials in the development and evaluation sets.

Development Evaluation
Male Female Total Male Female Total

Target speakers 45 61 106 45 61 106
Genuine trials 4500 6100 10600 9446 13385 22831
Impostor trials 45000 61000 106000 85592 118000 203592
Spoofed trials 45000 61000 106000 85592 118000 203592

2.2. Spoofing preparation and execution

We now introduce the protocol for producing the spoofing materi-
als. We designed two training sets: small and large. The small set
consists of data only from Part-A, while the large set includes data
from both Part-A and Part-B. Would-be attackers should select one
of these to train their spoofing system. The small set comprises par-
allel training data, and so enables attackers to use voice conversion
methods reliant on parallel training data, such as the method imple-
mented in Festvox.3

In SAS , during the execution of speech synthesis spoofing, the
transcript of an impostor trial was used as the textual input to the
speech synthesis systems, while for voice conversion (VC) spoofing,
the speech signal of the impostor trial was the input to the VC sys-
tem. As a result, the zero-effort impostor trial, the speech synthesis
spoofed trial and the voice conversion spoofed trial all have the same
language content (i.e., word sequence).

The spoofing systems were used to generate spoofing materials
for both development and evaluation, and so the number of spoofed
trials is exactly the same as the number of impostor trials (Table 1).
This allows fair comparisons to be made between non-spoofed and
spoofed speaker verification results.

2.3. Evaluation metric

As discussed above, the protocol for speaker verification follows the
NIST SRE style, so the evaluation metric designed for NIST evalua-
tion can be easily adopted. For example, the performance measures
Equal Error Rate (EER), False Acceptance Rate (FAR), False Rejec-
tion Rate (FRR) and Detection Cost Function (DCF) can be applied.
In the benchmarking results we present here, EERs and FARs will
be reported.

3. SPOOFING APPROACHES

In the current version of SAS , spoofing materials comprise the out-
put from two speech synthesis systems and seven voice conversion
systems. These systems are built using both open-source software
and our internal systems. Next, we briefly describe the systems that
were used to generate the spoofing materials in SAS .

NONE: This is a baseline zero-effort impostor trial in which the
impostor’s own speech is used directly with no attempt to match the
target speaker.

SS-SMALL: This HMM-based TTS system is based on the
statistical parametric speech synthesis framework described in [20].
The speaker adaptation techniques in this framework allow the
generation of a synthetic voice using as little as a few minutes of
recorded speech from the target speaker, making it an effective and
easily-accessible tool for SV spoofing. We used the latest version
(2.2) of the open-source code “HTS” [21, 22].

In the speech analysis and the average voice training phase, the
STRAIGHT vocoder with mixed excitation is used, which results in

3http://festvox.org/index.html



60-dimension Bark-Cepstral coefficients, log F0 and 25-dimension
band-limited aperiodicity measures [23, 24]. Hidden semi-Markov
models (HSMMs) [25] are trained on a large multi-speaker database
called voice bank corpus [26] that include hundreds of English
speakers to simultaneously model acoustic features and duration. In
the speaker adaptation phase, the speaker-independent HSMMs are
transformed using structural variational Bayesian linear regression
[27] followed by MAP, using the target speaker’s data from Part-
A. Both the output probability density functions for the acoustic
features and the duration model parameters are transformed. To syn-
thesise speech, acoustic feature parameters are generated from the
adapted HSMMs using a parameter generation algorithm that con-
siders global variance [28]. An excitation signal is generated using
mixed excitation and pitch-synchronous overlap and add [29] and
used to excite a Mel-logarithmic spectrum approximation (MLSA)
filter [30] corresponding to the STRAIGHT Bark cepstrum, to create
the final synthetic speech waveform.

SS-LARGE: This system is the same as SS-SMALL, except that
a larger set of adaptation data comprising both Part-A and Part-B was
used when adapting the speaker-independent HSMMs to each target
speaker.

VC-FESTVOX: This is the voice conversion toolkit within the
publicly-available open-source Festvox system. It is based on the al-
gorithm proposed in [31], which is a joint density Gaussian mixture
model with maximum likelihood parameter generation considering
global variance. We used the Part-A (i.e., small) set of parallel train-
ing data, and kept the default settings of the toolkit, except that the
number of Gaussian components in the mixture distributions was set
to 32.

VC-GMM: This is another standard GMM-based voice con-
version method also using the parallel training data from Part-A.
It is very similar to VC-FESTVOX but with some enhancements.
STRAIGHT was used as the speech analysis-synthesis method to
extract high-quality speech parameters, such as F0, spectral enve-
lope, and aperiodicity measures. The search range for F0 extraction
was automatically optimized speaker by speaker to reduce errors.
A power threshold for extracting active frames used to estimate the
joint density GMM was also optimized automatically per speaker.
Two GMMs were trained for separately converting the 1st through
24th Mel-Cepstral coefficients (MCCs) and 5 band aperiodicity mea-
sures. The number of mixture components was set to 32 for the spec-
tral features and 8 for the aperiodicity measures, respectively. For
some speaker pairs, the number of components was reduced when
defunct mixture components were automatically removed. To en-
hance the variance of the converted spectral parameter trajectories,
GV-based post-filtering [32] was used instead of GV-based parame-
ter conversion.

VC-KPLS: This voice conversion system uses kernel partial
least square (KPLS) regression [33], trained on the Part-A (small)
parallel data. 300 reference vectors and a Gaussian kernel were used
to derive kernel features, and 50 latent components were used in the
PLS model. Dynamic kernel features were not included, for simplic-
ity. We used STRAIGHT to extract 24-dimensional Mel-Cepstral
coefficients, 25 band aperiodicities (BAPs), and F0.

VC-EVC: This is a many-to-many eigenvoice conversion
(EVC) system [34]. The eigenvoice GMM (EV-GMM) was con-
structed from the training data from one pivot speaker in the ATR
Japanese speech database [35], and 273 speakers (137 male, 136
female) from the JNAS database. 4 Settings were the same as in
[36]. The 272-dimensional weight vectors were estimated by using

4http://www.milab.is.tsukuba.ac.jp/jnas/instruct.html

the Part-A (small) training data. Covariance matrices in EV-GMM
were not updated, i.e. the mean vectors of source and target speak-
ers were independently updated. We used STRAIGHT to extract
24-dimensional Mel-Cepstral coefficients, 5 BAPs, and F0. The
number of mixture components was fixed at 128. The conversion
method was applied only to the Mel-Cepstral coefficients.

VC-TVC: This is a tensor-based arbitrary voice conversion
(TVC) system [36]. To construct the speaker space, the same
Japanese dataset as in VC-EVC was used. The size of weight ma-
trices which represent each speaker was set to 48 × 80. The same
part of the SAS database and the same features as in VC-EVC were
used, and again only the Mel-Cepstral coefficients were converted,
without altering other features.

VC-FS: This is a frame selection voice conversion system,
which is a simplified version of exemplar-based unit selection [37],
using a single frame as an exemplar and without a concatenation
(join) cost. We used the Part-A (small) data for training. The
same features as in VC-KPLS were used, and once again only the
Mel-Cepstral coefficients were converted.

VC-C1: As in VC-KPLS and VC-FS, STRAIGHT was used
to extract Mel-Cepstral coefficients, BAPs and F0. The first co-
efficient of the source speaker’s Mel-Cepstral coefficients was con-
verted by a linear transformation. This is the simplest voice conver-
sion method, since it only changes the overall slope of the spectral
envelope, and not any other speaker-specific features.

In all the voice conversion approaches, F0 was converted by
a global linear transformation: simple mean-variance normalisa-
tion. In VC-KPLS, VC-EVC, VC-TVC, VC-FS and VC-C1, source
speaker BAPs were simply copied, without undergoing any conver-
sion.

4. INITIAL BENCHMARKING EXPERIMENTS

To accompany the SAS database, we provide some benchmark
speaker verification experimental results.

4.1. Speaker verification systems

We used two speaker verification systems representing the current
state-of-the-art: Joint Factor Analysis (JFA) [38] and Probabilis-
tic Linear Discriminant Analysis (PLDA) [39], under two enrol-
ment scenarios, 5-utterance and 50-utterance. Both systems used the
same front-end to extract acoustic features, comprising 19 dimension
MFCC and energy features with delta and delta-delta coefficients.
By excluding the static energy feature, 59-dimensional features were
used in both systems. The AudioSeg toolkit was used to perform
voice activity detection (VAD) [40]. In both systems, we used three
Wall Street Journal (WSJ) databases (WSJ0, WSJ1, and WSJCAM)
and the Resource Management database (RM1) for training the Uni-
versal Background Model (UBM) and the eigenspaces. From WSJ0
and WSJ1, only the SI training speakers were used. All speakers
from the WSJCAM training, development and test sets were used.
During scoring, T-norm was applied for both systems.

JFA: A Joint Factor Analysis system with a UBM of 512 com-
ponents, and eigenvoice and eigenchannel spaces with 300 and
100 dimensions respectively. Cosine scoring was performed on the
speaker variability vectors.

PLDA: Using the same UBM as in JFA, the PLDA approach
operates in i-vector space, the dimension of which was set to 400.
Because i-vectors have a heavy-tailed distribution, radial Gaussian-
ization [41] was performed, then the i-vector dimension was reduced
to 200 using linear discriminant analysis (LDA) and the within-class
covariance matrices of the resulting vectors were whitened using



Table 2. Initial spoofing results on the development and evaluation sets of SAS using the metrics of Equal Error Rate (EER) and False Alarm
Rate (FAR) for the two variants (-5 and -50) of two speaker verification systems based on Joint Factor Analysis (JFA) or Probabilistic Linear
Discriminant Analysis (PLDA).

Development Evaluation
EER FAR FAR

JFA- JFA- PLDA- PLDA- JFA- JFA- PLDA- PLDA- JFA- JFA- PLDA- PLDA-
Spoofing 5 50 5 50 5 50 5 50 5 50 5 50
NONE (Baseline) 3.29 1.29 1.44 0.66 3.29 1.29 1.44 0.66 3.43 1.40 1.44 0.66
SS-SMALL 25.27 23.83 21.97 19.69 90.80 94.44 90.85 90.98 90.80 94.38 90.71 90.60
SS-LARGE 27.47 25.95 23.96 22.15 93.59 97.23 94.11 94.46 93.64 97.32 93.68 94.05
VC-FESTVOX 30.09 30.36 28.94 27.97 95.55 98.32 98.60 99.20 95.46 98.44 98.41 99.11
VC-GMM 27.30 27.38 26.76 26.25 92.93 96.51 95.69 96.41 92.80 96.45 95.59 96.21
VC-KPLS 19.60 18.24 20.96 20.11 76.76 84.56 89.45 89.51 77.10 84.70 89.19 89.46
VC-TVC 19.32 17.69 20.03 18.94 73.40 80.32 84.73 84.45 73.68 80.67 84.46 84.37
VC-EVC 15.64 13.12 16.20 14.73 62.34 67.67 80.12 78.83 62.68 67.94 80.09 78.92
VC-FS 23.48 22.49 25.29 23.62 85.84 91.99 94.47 95.41 85.51 91.82 94.17 95.13

M
al

e

VC-C1 3.60 1.44 1.69 0.86 4.48 2.23 2.28 1.25 4.66 2.16 2.24 1.15
NONE (Baseline) 6.54 2.08 2.48 1.08 6.54 2.08 2.48 1.08 6.40 2.02 2.38 1.00
SS-SMALL 23.76 17.90 19.49 17.78 79.03 77.01 83.53 89.48 79.43 77.53 83.96 89.88
SS-LARGE 25.71 19.88 22.17 20.73 83.39 83.39 89.54 94.23 83.58 83.71 89.90 94.55
VC-FESTVOX 26.36 25.04 25.42 24.74 82.06 89.59 90.83 93.20 82.45 90.07 88.69 91.27
VC-GMM 26.32 24.84 23.95 23.65 81.32 88.38 88.70 91.88 81.88 89.02 89.37 92.41
VC-KPLS 19.68 14.40 19.31 17.61 66.85 64.01 79.08 80.56 67.22 64.55 79.64 81.10
VC-TVC 19.63 14.30 17.10 15.09 64.60 63.29 72.99 75.35 64.73 63.68 73.30 75.55
VC-EVC 17.98 11.95 14.99 12.78 61.96 56.64 69.07 70.43 62.12 57.14 69.95 71.35
VC-FS 20.89 15.94 21.08 19.70 68.71 71.19 81.82 87.51 69.12 71.52 82.27 87.78

Fe
m

al
e

VC-C1 7.74 2.70 3.07 1.53 11.95 5.06 5.26 3.20 11.78 4.92 5.14 3.19

within-class covariance normalization (WCCN) [42]. The dimen-
sionality of the resulting vectors was further reduced down to 100
by PLDA. Scoring was done with a likelihood ratio test.

In the two enrolment scenarios, the short enrolment utterances
were merged into sessions of 5 before enrolment. Therefore, after
merging, either 1 or 10 sessions were used in enrolment. For PLDA,
in the 10 sessions case, i-vectors that were extracted from all 10
sessions were averaged, while for JFA, all features from all sessions
were merged. We use JFA-5 and PLDA-5 to denote systems with 5
enrolment utterances (1 session), and JFA-50 and PLDA-50 for the
50-utterance (10 session) case.

4.2. Initial benchmarking results

We only report EERs and FARs for our initial speaker verification
results, as the two measures are more related to spoofing. The results
are presented in Table 2. Without surprise, the EERs and FARs for
the baselines are very low, that is close or below 1% by JFA-50 and
PLDA-50 systems, as the SAS database is clean without any channel
or noise effects. However, the short duration of the trials prevents the
EERs or FARs to go even lower.

Even through the ASV systems achieve very good speaker ver-
ification performance, they are extremely vulnerable to spoofing at-
tacks. Even the most simple VC-C1 spoofing attack, which only
changes the spectral slope of the source speaker, considerably in-
creases the False Alarm Rate (FAR). The more sophisticated attacks
using speech synthesis or voice conversion lead to FARs as high as
99.11%. In general, speech synthesis leads to FARs of over 90%
for male and over 80 % for female, even for the SS-SMALL sys-
tem which has access to only 24 utterances (Part-A) from the target
speaker.

Voice conversion spoofing is sometimes an even more effec-
tive attack that speech synthesis. It is worth highlighting that the
publicly-available voice conversion toolkit VC-FESTVOX is gen-
erally at least as effective as the other voice conversion and speech
synthesis techniques. The second interesting observation is that
although VC-EVC uses Japanese database to train eigenvoice for
adaptation, it still increase FARs as high as other methods. An-

other observation is that even though more enrolment data is helpful
to have lower EERs and FARs on non-spoofed data, it does not
achieve lower error rates in the face of spoofing. These spoofing
results are consistent with our previous findings on both telephone
quality [11, 12] and clean speech [8, 9].

5. CONCLUSIONS

In this paper, we have introduced the first version of what we hope
will become a standard dataset for spoofing and anti-spoofing re-
search. Currently, the SAS corpus includes speech generated us-
ing nine spoofing methods, each of which comprises around 300000
spoofed trials. To set an initial benchmark, we have provided spoof-
ing results when attacking two speaker verification systems. With-
out any countermeasures in place, these verification systems are ex-
tremely vulnerable to spoofing attacks from many of the nine spoof-
ing methods included in SAS .

Our plan is to continue extending SAS by adding more sophis-
ticated spoofing techniques, such as unit selection speech synthesis,
frequency warping-based voice conversion, waveform modification-
based voice conversion, phase-preserving voice conversion, and so
on.

The current version of SAS is limited to text-independent
speaker verification, so we plan to also create a database suitable
for text-dependent speaker verification and include in that further
spoofing attack methods such as replay spoofing and imitations.

In this paper, we only presented benchmark speaker verification
results, to demonstrate the vulnerability of current systems to spoof-
ing. In a future paper, we will present benchmark countermeasure
results as well as the analysis of the perceptual quality of the audio
created by the spoofing attacks. There are also plans for challenge,
in the spirit of NIST SRE evaluations or the Blizzard Challenge, to
push forward research on spoofing and anti-spoofing countermea-
sures and to raise its visibility to the speaker verification, voice con-
version, and speech synthesis communities.
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