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Abstract
Recurrent neural network language models have been shown to
consistently reduce the word error rates (WERs) of large vo-
cabulary speech recognition tasks. In this work we propose to
enhance the RNNLMs with prosodic features computed using
the context of the current word. Since it is plausible to com-
pute the prosody features at the word and syllable level we have
trained the models on prosody features computed at both these
levels. To investigate the effectiveness of proposed models we
report perplexity and WER for two speech recognition tasks,
Switchboard and TED. We observed substantial improvements
in perplexity and small improvements in WER.
Index Terms: RNNLMs, 3-gram, prosody features, pause dura-
tion, duration of the word, syllable duration, syllable F0, GMM-
HMM, DNN-HMM, Switchboard conversations and TED lec-
tures

1. Introduction
Current large vocabulary speech recognition systems typically
comprise an acoustic model which relates acoustic features to
sub-word units, a lexical model of some kind (typically a dic-
tionary), and a language model which provides probability es-
timates for word sequences. Suprasegmental prosodic features,
such as intonation and timing information, fit uneasily into such
a framework. However, prosodic features are of potential in-
terest in speech recognition: they are relatively robust to noise
and provide rich additional information. Prosodic information
is available at various levels in a speech signal: within words
(for instance, word and phone duration), between the words
(for instance, pause duration), and across multiple words (for
instance, F0 contour).

Prosodic information has been successfully used for topic
segmentation [1], disfluency detection [2], processing of multi
party meetings [2], dialogue act classification [3], sentiment
classification [4] and emotion recognition [5]. There have also
been a number of attempts to include prosodic information in
language modelling.

Vergyri et al [6] and Gadde [7] investigated the use of
modelling word durations, using an explicit Gaussian mixture
model, trained on feature vectors constructed by considering the
duration of the phones in that word; Vergyri et al also used n-
grams to model the pause duration between the words. Prosodic
structure may be interpreted as correlating with non-word phe-
nomena such as sentence boundaries and speech disfluencies
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including repetitions, deletions and filled pauses; Stolcke et.al
[8] attempted to incorporate this structure using a hidden event
n-gram language model, with prosody of hidden events mod-
elled using a decision tree classifier trained using speech data
annotated for sentence boundaries and disfluencies.

Huang and Renals [9] argued that prosodic information
could be more naturally captured at a syllabic level, and used
an acoustically-based system for automatic syllable identifica-
tion. Four-dimensional prosodic feature vectors were extracted,
containing F0, energy, slope of F0 and durational information
for the syllable, which were vector quantised using a 16-word
codebook. Thus a syllable was represented by a single code-
word, and a word by a sequence of syllable codewords. This
representation is amenable to n-gram modelling, using factori-
sation and a hierarchical prior in this case. Maximum entropy
language models have also been used to capture prosodic infor-
mation, such as learning the dependencies between the syntactic
features, such as POS tags, and prosodic features, such as accent
and duration [10].

An n-gram model defines a distribution over discrete sym-
bol sequences which is not the most natural representation for
continuously valued prosodic features. Neural network lan-
guage models [11, 12, 13, 14] transform symbolic word repre-
sentations to a continuous space, and a number of recent papers
have augmented the word feature input to a neural network lan-
guage model to incorporate additional context [15] or to learn
correlations between words and richer annotations such as part-
of-speech tags [16]. We have built on these approaches by de-
veloping a neural network language model with an extra feature
layer to jointly model words and the related prosodic features
computed from the context of the current word. We also model
prosody at the syllabic level using an automatic syllable detec-
tion algorithm discussed in Section 2 and vary the amount of
syllabic context (from 1–10 syllables).

We have performed language modelling experiments on the
Switchboard and TED corpora reporting results in terms of both
perplexity and word error rate (WER) on standard test sets.

2. Recurrent Neural Network Language
Model

Neural network language models have been proposed to address
some of the drawbacks of n-grams [11, 12]. Recurrent neu-
ral network language models (RNNLMs) estimate the proba-
bility of a word given its (potentially infinite) context in a low
dimensional continuous space. The recurrent hidden connec-
tions in the RNNLM are responsible for learning the temporal
dependencies. RNNLMs have been shown to consistently im-
prove the perplexity and WER of standard speech recognition
tasks, compared to n-grams and feed-forward neural network
language models (NNLMs) [12, 13, 14, 17, 18].
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Figure 1: Recurrent neural network language model with a fea-
ture layer [13, 15]

The architecture of an RNNLM with an extra feature layer
is shown in Figure 1. The input to the network at time t com-
prises the index of the previous word, the feature vector (ft) at
time t and the state of the hidden layer at time t–1. The index
of the previous word is encoded using 1 of N coding. The hid-
den layer at time t and the output probability distribution are
computed as follows:

ht = f(Whxxt + Whhht−1 + Whfft) (1)
yt = g(Wyhht), (2)

where xt is the input vector, ht−1 is the state of the hidden layer
at time t − 1, ht is the state of hidden layer at time t, ft is the
prosodic feature vector at time t, and yt is the output probability
distribution. f , g are sigmoid activation and softmax functions,
respectively. RNNLMs are trained using the back propagation
through time (BPTT) algorithm [19]. In BPTT, training is ac-
complished by unfolding the recurrent network through time,
and training as a deep network with hidden layer weights for
each time step constrained to be equal. In the experiments re-
ported in this work, the error is propagated three steps back in
time. The objective of training is to maximize the likelihood
of training data by minimizing the cross entropy difference be-
tween the target and output probability distributions.

We propose an RNNLM which learns a hidden recurrent
state that combines lexical and prosodic information, enabling
the RNNLM to learn dependences between word context and
prosodic context. We explored a number of of prosodic features
in this work:
Word duration (RNNLM-worddur): Duration of the previous

word, obtained by forced alignment of the training data.
Pause duration (RNNLM-pause): Duration of the pause pre-

ceding the current word (zero if no pause).
Final phone duration (RNNLM-fphonedur): The pause du-

ration between the words effects the duration of the pre-
vious word. This effect is known as pre-pausal length-
ening [7]. To model this effect the RNNLMs are given
with duration of the final phone in preceding word.

Syllable duration (RNNLM-syldur): Duration of the sylla-
bles extracted from the context of the current word, en-
coded as the index of the previous word and durations of
the syllables in the context. The syllables are extracted
from the acoustics using an automatic syllable extrac-
tion algorithm [20]. A simple alignment procedure was
used to obtain the syllabic context, in which a fixed num-
ber of syllable durations preceding the current word are
given as an input to the RNNLM, irrespective of sentence

boundaries. To investigate the effect of context length,
RNNLMs were trained on the durations of the three, five
and ten preceding syllables.

Syllable F0 (RNNLM-F0): Similar to the syllable duration ex-
periments, RNNLMs are given with word feature and F0
features computed from the syllables in the context of
the current word. Four different features are computed
at each syllable: mean, maximum, minimum and range
of F0. Before computing the features the F0 values of
each syllable are normalised using z-score normalisa-
tion. To investigate the effect of length of the context the
RNNLMs were trained on F0 features computed from
three, five and ten preceding syllables.

All duration features were unnormalised for speaker, channel,
or recording session.

3. Text Experiments
Our first experiments used the Switchboard training transcripts,
a total of 3.4M tokens, of which the first 130K tokens were used
as validation data, to tune the parameters. We report perplex-
ity (PPL) results using the validation data and the Switchboard
evaluation set eval2000 (LDC2002S09). The eval2000 data
contains 20 Switchboard and 20 CallHome English (CHE) con-
versations. In this work we report PPLs and WERs on Switch-
board conversations only. Hereafter, the Switchboard part of
eval2000 is referred as eval2000-swbd.

We estimated a back-off trigram LM by interpolating the
LMs trained on 3.2M tokens of Switchboard training tran-
scripts and 11M tokens of Fisher English part1 transcripts
(LDC2004T19). The LMs are trained using Kneser-Ney
smoothing and the interpolation coefficients are optimized for
better PPL on validation data. This pruned trigram LM is used
in first pass decoding to generate the lattices.

The RNNLMs were trained only on the 3.2M tokens of
Switchboard training transcripts. Further details about the
acoustic models used to align the data are given in Section 4.1.
A vocabulary of 30,000 words was used. The RNNLM used
300 hidden units in the recurrent hidden layer. A factored out-
put layer with 100 classes was used to reduce the computational
complexity [14].

Perplexity results for the Switchboard validation and eval-
uation sets are shown in Table 1. These results indicate that the
RNNLM improves the perplexity over the 3-gram LM by about
5% relative. The results using the pause duration features re-
sult in an improvement of about 13% relative over the baseline
RNNLM. The word duration features also reduce the perplex-
ity over the baseline RNNLM, but by a much smaller amount,
and the final phone duration features result in an 8–10% rela-
tive reduction over the RNNLM baseline. The syllable duration
and F0 features result in a reduction of perplexity of over 15%
and 13% relative respectively. Similar improvements can be ob-
served after linear interpolation with the 3-gram baseline. The
interpolation coefficient was 0.5 in all cases.

4. ASR Experiments
Following the experiments to evaluate language model perplex-
ity, we carried out a set of speech recognition experiments
on two tasks: the recognition of Switchboard telephone con-
versations, and the recognition of TED talks. The language
models were evaluated in terms of WER and for each cor-
pus we used standard evaluation protocols: NIST CTS evalu-
ation for Switchboard and IWSLT for TED. We note that differ-



Model Validation+KN3eval2000-swbd+KN3
KN3 82.4 82.4 81.9 81.9

RNNLM 78.4 70.6 77.5 70.8
RNNLM-pause 68.6 64.4 66.5 63.9

RNNLM-worddur 70.8 65.8 76.7 68.2
RNNLM-fphonedur 70.2 65.3 70.7 66.1

RNNLM-syldur 63.7 61.4 65.0 62.0
RNNLM-sylF0 70.1 64.6 67.3 63.6

Table 1: Perplexities of 3-gram, RNNLM and prosody
RNNLMs trained on word duration, pause duration, duration of
final phone, syllable durations and syllable F0 features. Here
the RNNLM-syldur and RNNLM-sylF0 models are trained
on syllable context length of five. 3-gram LM is trained on
combination of Switchboard and Fisher transcripts and the
RNNLMs are trained only on part of Switchboard training tran-
scripts (3.2M).

ent prosodic effects are observed, since Switchboard consists
of conversational telephone speech, and TED consists of well-
prepared public talks.

4.1. Switchboard

We report the WERs on the eval2000-swbd test set, which com-
prises a total of 20 conversations, containing 21,000 word to-
kens with an out of vocabulary (OOV) rate of 5% with respect to
our vocabulary. Two speech recognition acoustic models were
used to compute the prosody features: GMM-based and DNN-
based.

The GMM-based acoustic models were trained on 300
hours of switchboard data (LDC97S62), with the Mississippi
state transcripts (http://www.isip.piconepress.
com/). The acoustic features comprised 7 frames (±3) of 13-
dimension MFCC features, with the dimension reduced to 40
using a linear discriminant analysis (LDA) transform, followed
by a decorrelating semi-tied covariance (STC) transform. The
features were adapted per speaker using feature space (con-
strained) maximum likelihood linear regression (fMLLR). The
maximum likelihood system trained on LDA+STC+fMLLR
features is then discriminatively trained using the boosted
maximum mutual information (bMMI) criteria, with a b value
of 0.1. All the baseline experimental results reported here are
reproduced using Kaldi speech recognition recipe given in
[21]1.

The DNN-based acoustic models were also trained on 300
hours of Switchboard telephone conversation data [22]. The
acoustic features comprised 11 frames (±5) of MFCC features,
including delta and acceleration coefficients. The features were
transformed using LDA and decorrelated using STC, as for the
GMM-based system. However, they were not speaker adapted.
The output layer consists of 8827 nodes, corresponding to the
set of context-dependent HMM states, used in the GMM-based
system. Six hidden layers of 2048 units with a sigmoid non-
linearity were used.

The RNNLMs trained on word and prosody features were
incorporated into the ASR process by rescoring the 100-best
lists, generated from the lattices of the GMM-based system.
The prosodic features were computed by aligning the 100-best
lists with the acoustics using both GMM-based and DNN-based

1Due to changes in the Kaldi recipe the reported results here are
different to those originally published in [21]

Model GMM(%WER) DNN(%WER)
3-gram 19.5 19.5

RNNLM 18.1 18.1
RNNLM-pause 18.0 17.9

RNNLM-worddur 17.6 17.9
RNNLM-fphonedur 17.8 18.0

Table 2: %WERs computed on 100-best lists of eval2000 data
set (Switchboard conversations only). GMM and DNN-based
acoustic models are used to force align the transcripts

acoustic models. To compute the final score, the scores of
RNNLM are interpolated with the scores of n-grams from the
100-best lists. The interpolation coefficients are optimized for
better WERs. The WERs computed on Switchboard conversa-
tions of eval2000 are given in Table 2.

In second column of Table 2, we can observe that the
RNNLM improves the baseline system by 1.4% absolute. In
case of proposed prosody RNNLMs, we can observe 0.5% ab-
solute (3% relative) reduction in WER with RNNLM-worddur
and 0.3% absolute with RNNLM-fphonedur models. The im-
provement with the RNNLM-pause model is much smaller
compared to the other models.

In third column of Table 2 we report the WERs on same
eval2000 data set but aligned using the DNN-based acoustic
models. After aligning the 100-best lists with the DNN-based
acoustic models the RNNLM-pause model improves the base-
line RNNLM by 0.2% absolute. The accuracy of RNNLM-
worddur and RNNLM-fphonedur models were reduced com-
pared to the WERs reported in second column of Table 2.

4.2. TED talks

DNN-based acoustic models were used for training the acoustic
models for TED [23, 24]. The DNNs were trained using 143
hours of TED lectures, recorded before 2010 and 78 hours of
AMI meeting data (http://corpus.amiproject.org).
The DNN acoustic features comprised 11 frames (±5) of
MFCC features, including delta and acceleration features. The
features were transformed using LDA and adapted per speaker
using fMLLR. The DNNs were trained by optimising the cross
entropy objective function. There were six 2048-unit hidden
layers with sigmoid non-linearity. A pruned 3-gram language
model trained on 351M word tokens was used in the first pass
decoding to generate the lattices [25].

We report PPLs and WERs on tst2011, an evaluation set for
IWSLT2. The RNNLM and prosodically-enhanced RNNLMs
were trained using 2.8M tokens, a combination of TED lectures
and AMI data. The development data for tuning the parame-
ters and for early stopping was tst2012, also an evaluation set
for IWSLT, consisting of 20,000 tokens. 400 hidden units were
again used with a sigmoid non-linearity and a factored output
layer with 200 classes was used to reduce the computational
requirements.

The WERs of tst2011 dataset are given in Table 3. The
RNNLM improves the baseline system by 0.7% absolute (5%
relative). As expected, the proposed RNNLM-pause and
RNNLM-worddur models are not effective enough to improve
the WERs. However, the RNNLM-fphonefur model improves
the WERs by 0.2% absolute (2% relative).

2International Workshop on Spoken Language Translation



Model PPL %WER
3-gram 120.2 12.6

RNNLM 198.0 11.9
RNNLM-pause 184.1 12.0

RNNLM-worddur 194.1 11.8
RNNLM-fphonedur 184.2 11.7

Table 3: PPLs and %WERs computed on tst2011 and 100-best
lists of tst2011, respectively. DNN-HMM hybrid acoustic mod-
els trained on TED and AMI data are used to force align the
transcripts and compute the prosody features

5. Syllable duration and F0
Finally we explored the use of syllable duration and F0 features
for the Switchboard task. To investigate the effect of length
of syllable context the RNNLM-syldur models were trained on
context lengths of 3, 5 and 10. 300 recurrent hidden units were
used, and a factored output layer with 100 classes was used to
reduce the time complexity. From Table 4, we can observe 0.3%
absolute (2% relative) reduction in WER using the RNNLM
trained on durations of 5 syllables (RNNLM-syldur5) from the
context of the current word. Similarly we can observe 0.2%
absolute improvements with a context length of 3 and 0.1% ab-
solute improvement with a context length of 10.

Model PPL %WER
3-gram 81.9 19.5

RNNLM 77.5 18.1
RNNLM-syldur3 63.5 17.9
RNNLM-syldur5 65.0 17.8
RNNLM-syldur10 63.2 18.0

Table 4: %WERs are computed on 100-best lists of eval2000
data set (Switchboard conversations only). Automatic syllable
detection algorithm is used to get the boundaries of syllables.
GMM-based acoustic models are used to get the word boundary
information

Similar to the RNNLM-syldur models the effect of syllable
context is investigated by training the RNNLM-sylF0 models
on context lengths of 3, 5 and 10. The feature vector is obtained
by concatenating the F0 features computed at each syllable in
the context3. The features computed are mean, maximum, min-
imum and range of F0. Hidden layer has 300 hidden neurons
and a factored layer with 100 classes was used to reduce the
computational complexity. From the Table 5, we can observe
improvements in PPLs but not in WERs.

Model PPL %WER
3-gram 81.9 19.5

RNNLM 77.5 18.1
RNNLM-sylF0 3 66.1 18.4
RNNLM-sylF0 5 67.3 18.3
RNNLM-sylF0 10 73.3 18.7

Table 5: %WERs are computed on 100-best lists of eval2000
data set (Switchboard conversations only). Before computing
the F0 features the F0 sequence of each syllable is normalised
using z-score normalisation. GMM-based acoustic models are
used to get the word boundary information

3Kaldi pitch tool is used to compute the F0 features [26]

6. Discussion and Summary
From the experimental results given in Table 2 we can observe
moderate improvements with the RNNLMs trained on prosodic
features over the baseline RNNLM. We can observe significant
improvements with the RNNLM-worddur models than the other
models. The RNNLM-worddur model improves the baseline
by reducing the number of deletions or in other terms during
re-ranking the model selects the longer sentences. In case of
RNNLM-pause model, surprisingly there is no correlation be-
tween the PPL and WER improvements. A possible reason for
this behaviour is that the n-best lists can be noisy and it is some-
times difficult to get precise alignments to the pause regions.
We can observe another 0.1% absolute with the pause features
computed by DNN-based hybrid acoustic models. From the
Table 4, we can observe that the length of the context has an
effect on percentage of errors. As the length of the context
increases the accuracy of the models got reduced (RNNLM-
syldur10). Given RNNLM-sylF0 models (in Table 5) are doing
worse than baseline models further experiments can be done by
training the models on combination of syllable duration and F0
features. Here the features are normalised by z-score normali-
sation, more experiments can be done by training the models on
unnormalised features or normalised by other techniques.

Given the improvements with the prosody RNNLMs, the
correlations between the words and prosody features can alter-
natively be modelled by using multitask learning [27, 28, 29].
In multitask learning an extra output layer can be added to pre-
dict the prosodic features. During testing the network only pre-
dicts the probability distribution over the words. In the experi-
ments reported here the durations are not normalised for speaker
variability. Further experiments can be performed by normalis-
ing the durations for speaker and channel variations. In this
work, the effect of pause duration on preceding word is mod-
elled by training the RNNLMs on duration of the final phone
in the preceding word. This effect can be further investigated
by training the RNNLMs on duration of the final vowel or syl-
lable in preceding word. Given the prosody RNNLMs trained
only on 3.2M tokens of acoustic data, more experiments can be
done to investigate how well the prosody RNNLMs trained on
much more data are complimentary to the baseline models, also
trained on more data.

In this work we have trained the RNNLMs on duration of
the previous word, the pause duration between the words, the
duration of the final phone in the preceding word, the duration
of the syllables and syllable F0 features. The proposed models
improve perplexity before and after interpolation with the 3-
gram baseline. We report WERs for the Switchboard and TED
tasks, observing small reductions in WER, compared with an
RNN baseline.
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