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Abstract
Probabilistic linear discriminant analysis (PLDA) acoustic
models extend Gaussian mixture models by factorizing the
acoustic variability using state-dependent and observation-
dependent variables. This enables the use of higher dimensional
acoustic features, and the capture of intra-frame feature corre-
lations. In this paper, we investigate the estimation of speaker
adaptive feature-space (constrained) maximum likelihood lin-
ear regression transforms from PLDA-based acoustic models.
This feature-space speaker transformation estimation approach
is potentially very useful due to the ability of PLDA acoustic
models to use different types of acoustic features, for example
applying these transforms to deep neural network (DNN) acous-
tic models for cross adaptation. We evaluated the approach on
the Switchboard corpus, and observe significant word error re-
duction by using both the mel-frequency cepstral coefficients
and DNN bottleneck features.
Index Terms: speech recognition, probabilistic linear discrim-
inant analysis, speaker adaptation, fMLLR, PLDA

1. Introduction
The most successful approaches to speaker adaptation are based
on maximum likelihood linear regression (MLLR) transforma-
tions [1, 2], usually in the context of a conventional Gaussian
mixture model (GMM) based acoustic model. Although hybrid
deep neural network (DNN) / hidden Markov model (HMM)
approaches now define the state-of-the-art for speech recogni-
tion [3, 4, 5, 6], it has been shown that feature-space MLLR
(fMLLR) transforms computed from a GMM acoustic model
can reduce the word error rate (WER) significantly when used
with DNN acoustic models [4, 7]. A well known limitation
of GMM-based acoustic models is that they only work well
with low-dimensional and decorrelated acoustic features. Con-
sequently, the application of fMLLR based speaker adaptation
is limited to only a few types of acoustic features. For in-
stance, DNN hybrid acoustic models can obtain higher recog-
nition accuracy using the log spectral features compared to the
widely used mel-frequency cepstral coefficients (MFCCs) [8],
however, estimating fMLLR transforms from (correlated) log
spectral features requires covariance modelling, which is chal-
lenging with large-scale conventional GMM systems.

To overcome the limitations of GMMs, we proposed an
acoustic model based on probabilistic linear discriminant anal-
ysis (PLDA) [9, 10]. This model can be viewed as an extension
of the GMM which is able to use higher dimensional feature
vectors and can learn feature correlations in subspaces. For
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acoustic modelling, PLDA is used to model the HMM state
density function directly, in contrast to its application to face
or speaker recognition [11, 12, 13]. A PLDA acoustic model
factorizes the acoustic variability using HMM state dependent
variables which are expected to be consistent across different
acoustic conditions, and observation dependent variables which
characterise acoustic changes at the frame level [9]. Similar to
a subspace GMM (SGMM) [14], the factorisation is based on
the inference of subspaces. However, while the SGMM uses a
set of full covariance matrices to directly model the per frame
acoustic variability, the PLDA model introduces an additional
set of projections to model this variability in lower-dimension
subspaces, thus making it suitable for higher dimensional fea-
tures.

Previously we have shown that PLDA is feasible for large
vocabulary speech recognition, and that it can accommodate
various types of acoustic feature [9, 15]. In this paper, we de-
velop a speaker adaptation approach for PLDA acoustic models
using fMLLR transforms. Since PLDA is a factorisation model
for a Gaussian distribution, the conventional algorithm to esti-
mate the fMLLR transforms for GMMs may still be applica-
ble [2]. However, we face the difficulty of optimising speaker
transforms for full covariance models, since PLDA approxi-
mates full covariances using a decomposition into low-rank ma-
trices. There are numerous previous papers on this problem
– for instance [16, 17, 18]. In this paper we study two ap-
proaches to circumvent this difficulty using the mean approxi-
mation and a sampling approach. Experiments were performed
on the Switchboard corpus, using both MFCC and DNN bottle-
neck features. These approaches were demonstrated to be effi-
cient and effective, providing substantial WER reduction with
little additional computational cost.

2. PLDA-based Acoustic Model
The PLDA-based acoustic model [9] is a generative model in
which an acoustic feature vector yt ∈ Rd from the j-th HMM
state at time index t is expressed as:

yt|j = Uxjt + Gzj + b + εjt, εjt ∼ N (0,Λ), (1)

where zj ∈ Rq is the state variable shared by the whole set
of acoustic frames generated by the j-th state. xjt ∈ Rp is
the observation variable which explains the per-frame variabil-
ity. Usually, the dimensionality of these two latent variables
is smaller than that of the feature vector yt, i.e. p, q ≤ d.
U ∈ Rd×p and G ∈ Rd×q are two low rank matrices which
span the subspaces to capture the major variations for xjt

and zj respectively. They are analogous to the within-class
and between-class subspaces in the standard linear discriminant
analysis (LDA) formulation, but are estimated probabilistically.



b ∈ Rd denotes the bias and εjt ∈ Rd is the residual noise
which is assumed to be Gaussian with zero mean and diagonal
covariance Λ. By marginalising out the residual noise variable
εjt, we obtain the following likelihood function:

p(yt|j) = N (yt;Uxjt + Gzj + b,Λ) . (2)

And if we also marginalise out the observation variable xjt, we
obtain:

p(yt|j) = N (yt;Gzj + b,UUT + Λ), (3)

which approximates the full covariance model by the low-rank
matrix U. Our previous results demonstrate that this approach
can achieve a significant decrease in WER [9].

2.1. Mixture and tied models

A single PLDA has a limited modelling capacity since it only
approximates a single Gaussian distribution. The modelling ca-
pacity can be increased by using mixture models, for example,
anM -component PLDA mixture model results in the following
component distribution:

yt|j,m = Umxjmt + Gmzjm + bm + εjmt, (4)
εjmt ∼ N (0,Λm) . (5)

If c is the component indicator variable, then the prior (weight)
of each component is P (c = m|j) = πjm. Given the latent
variables xjmt and zjm, the state-level distribution over fea-
tures is:

p(yt|j) =
∑
m

πjmN (yt;Umxjmt + Gmzjm + bm,Λm) .

Since the projection matrices Um and Gm are globally shared,
a large number of components can be used to improve the model
capacity, e.g. M = 400 [9].

Previously, we observed that PLDA mixture models are
prone to overfitting when using a large number of components.
Motivated by the parameter sharing approach in SGMMs [14],
we studied a tied version of the PLDA mixture model [19], in
which the state variable zjm is tied across all the components
for each HMM state:

yt|j,m = Umxjmt + Gmzj + bm + εjmt, (6)
εjmt ∼ N (0,Λm) . (7)

This approach can significantly reduce the number of state-
dependent parameters as well as the computational cost. Li et
al [10] presented a similar approach, which was applied to face
recognition. Using a global state variable may over-simplify the
model, so a further mixing-up strategy can be applied similar to
SGMMs [14]. We refer the readers to [19] for further details. In
this paper, to simplify the notation, we use the PLDA mixture
model for the discussion of speaker adaptation, but the exten-
sion to tied PLDA models is straightforward.

3. Estimation of fMLLR transforms
For a PLDA mixture model, learning fMLLR transforms is
equivalent to speaker adaptation with full covariance GMMs if
we use a likelihood evaluation function which marginalises out
the observation latent variable xjmt (3). To simplify the prob-
lem, in this work we derive the auxiliary function of fMLLR
transforms without marginalization of xjmt; this latent variable

is marginalised out only when estimating acoustic model pa-
rameters and decoding given the fMLLR transforms. There is
an obvious mismatch between fMLLR estimation and applica-
tion; however, we find the approach works reasonably well. Our
approach relies on a point estimate of xjmt, detailed below.

3.1. Posterior mean approximation

The first approach is to use the posterior mean of xjmt as
the point estimate to evaluate the likelihood function during
fMLLR estimation, which gives:

p(yt|j,m, T ) = |A|N (ŷt;Umxjmt + Gmzjm + bm,Λm),
(8)

where T denotes the transformation parameters (A, c), ŷt is
the adapted feature vector ŷt = Ayt +c, and xjmt is the mean
of its posterior distribution which can be obtained as:

P (xjmt|ŷt, zjm, j,m)

=
p(ŷt|xjmt, zjm, j,m)P (xjmt)∫

p(ŷt|xjmt, zjm, j,m)P (xjmt)dxjmt
. (9)

The rationale behind this approach is to move the model along
the basis spanned by Um to explain the adapted observation
better. Using the prior distribution P (xjmt) = N (0, I) 1 we
obtain:

P (xjmt|ŷt, zjm, j,m) = N (xjmt;V
−1
m wjmt,V

−1
m ) (10)

Vm = I + UT
mΛ−1

m Um (11)

wjmt = UT
mΛ−1

m (ŷt −Gmzjm − bm) . (12)

By replacing xjmt = V−1
m wjmt, we can write the auxiliary

function to optimise T as follows:

Q(T ) =
∑
jmt

γjmt

(
− 1

2
(ŷt −µµµjmt)

T Λ−1
m (ŷt −µµµjmt)

+ log |A|
)

+ const, (13)

whereµµµjmt = Umxjmt +Gmzjm +bm, and γjmt is the pos-
terior probability. Since Λm is diagonal, the auxiliary function
can be optimised using the conventional approach [2].

3.2. Prior mean approximation

The posterior mean approximation approach relies on the esti-
mation of the posterior distribution of xjmt given the observa-
tion ŷt. However, the posterior distribution is usually very flat
since it is computed only using one observation, and the estima-
tion is likely to be inaccurate. Our previous work [9] shows that
the posterior mean approximation approach performs signifi-
cantly worse than marginalising out xjmt using its prior distri-
bution in speaker-independent systems. Therefore, we consider
the other approach that uses the prior rather than the posterior of
xjmt for mean approximation. This means that no knowledge
from the observations will be used and it may be potentially
more robust. Since we use N (0, I) as the prior, the likelihood
function in this case is:

p(yt|j,m, T ) = |A|N (ŷt;Gmzjm + bm,Λm) . (14)

Estimating the transform parameters T is then straightforward.

1Note that usingN (0, I) as a prior is reasonable since, after conver-
gence, a non-zero mean can be accounted for by bm, and the variance
can be modified by rotating and scaling the matrix Um.



3.3. Unscented transform based sampling approximation

Finally, we may use a sampling approach to approximate the
integrated likelihood function. For instance, using a naive sam-
pling approach:

p(yt|j,m, T )

=

K∑
k=0

wk|A|N (ŷ;Umxk
jmt + Gmzjm + bm,Λm),

(15)

where x1
jmt, · · · ,xK

jmt are samples independently drawn from
the prior distribution P (xjmt) = N (0, I), and wk is the sam-
pling weight. Given an infinite number of samples, the approxi-
mation error is close to zero which is equivalent to marginal-
ising out xjmt using its prior distribution. However, this is
infeasible for computational reasons. In this work we employ
the unscented transform (UT) [20], a deterministic sampling ap-
proach which draws many fewer samples compared to alterna-
tive sampling approaches. UT draws samples deterministically
from the sigma points – a set of points chosen to have the same
mean and covariance as the original distribution. This approach
has been used in noise adaptation for robust speech recogni-
tion [21, 22, 23, 24]. For a Gaussian distribution x ∼ N (µµµ,ΣΣΣ),
UT draws samples as

x0 = µµµ, (16)

xi = µµµ+
[√

(2d+ κ)ΣΣΣ
]
i
, (17)

xi+p = µµµ−
[√

(2d+ κ)ΣΣΣ
]
i
, (18)

where i = 1, . . . , d, and
√

ΣΣΣ and [ΣΣΣ]i denote the Cholesky
decomposition and ith column of the covariance matrix ΣΣΣ re-
spectively. κ is a tuning parameter, p is the dimensionality of x,
where the weights are defined in UT as

w0 =
κ

p+ κ
, wi =

1

2(p+ κ)
. (19)

In this work, we set κ = 1/2 to give the equal weight to all
the samples [20]. Again, the estimation of fMLLR transforms
is readily available using equation (15).

4. Experiments
The experiments were performed using the Switchboard cor-
pus [25], a conversational telephone speech database released
by LDC with the catalog number as LDC97S62. The train-
ing set comprises about 300 hours of conversational telephone
speech, and the Hub-5 Eval 2000 data [26] is used as the test
set. Our systems were built using the Kaldi speech recognition
toolkit [27] with the additional implementation of the PLDA
acoustic model. In the following experiments, we used tied
PLDA, which works better and is also computational cheaper
compared to a PLDA mixture model [9]. We only report the
results using speaker adaptive training (SAT) [28] which inter-
leaves the estimation of the fMLLR transforms and the acous-
tic model parameters. We used the 30,000 word pronunciation
lexicon that was supplied with the Mississippi State transcrip-
tions [29], and a trigram language model for decoding.

4.1. MFCC features

We first show baseline results for GMM and PLDA systems
using MFCC features in Table 1. These initial systems were

fMLLR init fMLLR iter1 fMLLR iter2 fMLLR iter3
50

40

30

20

lo
gl
ik
el
ih
oo
d

(a)

SI model fMLLR init fMLLR iter1 fMLLR iter2 fMLLR iter3
34

35

36

37

38

W
ER

(%
)

(b)

Figure 1: The speaker adaptive training process for a PLDA
system. A speaker-independent (SI) acoustic model was used
to estimate the initial fMLLR transform, and then the acoustic
model was retrained given the speaker transforms for 4 itera-
tions before updating the fMLLR transforms. (a) shows the im-
provement of the log-likelihood on the training data after updat-
ing the transforms and acoustic model. (b) shows the reduction
of the word error rate.

Table 1: WERs (%) of baseline systems using 33 hours Switch-
board training data.

System Feature Dim CHM SWB Avg
GMM MFCC 0+∆+∆∆ 39 54.0 36.6 45.4
GMM MFCC 0(±3)+LDA STC 40 50.6 33.5 42.2
+ SAT MFCC 0(±3)+LDA STC 40 43.2 27.9 35.6
PLDA MFCC 0 (±3) 91 49.5 32.4 41.1
PLDA MFCC 0 (±4) 117 49.3 31.5 40.6
PLDA MFCC 0 (±5) 143 49.7 33.2 41.6
PLDA MFCC 0(±3)+LDA STC 40 45.7 29.5 37.7

trained using about 33 hours of Switchboard training data, and
we show separate results for the CallHome (CHM) and Switch-
board (SWB) evaluation sets. We have used MFCCs with dy-
namic features which are 39-dimensional, and also spliced static
13-dim MFCC 0 with or without LDA and semi-tied covari-
ance(STC) modelling [30]. As demonstrated previously [14],
the PLDA acoustic model is applicable to higher dimensional
feature vectors, but LDA and STC transforms are still benefi-
cial to this system using MFCCs.

We used the MFCC 0(±3)+LDA STC features for SAT
systems. The initial fMLLR transform was estimated from
the speaker-independent acoustic model, and then the acoustic
model was retrained for 4 iterations before updating the fMLLR
transforms. The process was repeated until convergence was
reached. Figure 1 illustrates the training process and the re-
sults of fMLLR re-estimation, where the prior mean approx-
imation training approach was used. We observed consistent
improvement in both log likelihood scores and recognition ac-
curacies. The SAT system converges after 2–3 re-estimations of
the fMLLR transforms. Table 2 shows the results of using the
three proposed fMLLR estimation approaches discussed in Sec-
tion 3. As a comparison, we also report the result of cross adap-
tation where the fMLLR transforms were borrowed from the
GMM system of Table 1. Similar to our previous results [9], the



Table 2: Speaker adaptive training results of PLDA systems us-
ing 33 hours Switchboard training data. The acoustic features
are 40-dim MFCC 0(±3)+LDA STC.

System CHM SWB Avg
Posterior mean approximation 43.1 28.3 35.7
Prior mean approximation 42.1 27.0 34.6
UT-based sampling 41.8 27.3 34.6
Cross adaptation 39.6 25.3 32.5

Table 3: WERs (%) using 300 hours Switchboard training data

System Feature CHM SWB Avg
DNN hybrid MFCC 0+∆+∆∆ (±5) 28.5 14.9 21.8
BN hybrid MFCC 0+∆+∆∆ (±5) 28.4 15.2 21.9
GMM MFCC 0(±3)+LDA STC 41.9 25.0 33.5

+SAT MFCC 0(±3)+LDA STC 36.3 21.4 28.9
+bMMI MFCC 0(±3)+LDA STC 33.1 18.5 25.9

GMM BN 31.7 18.6 25.2
+SAT BN 30.6 18.4 24.5
+bMMI BN 29.7 17.9 23.8

GMM BN + STC 31.7 18.0 24.9
+SAT BN + STC 30.1 17.7 23.9

PLDA BN 30.6 17.2 24.0
+SAT BN 28.5 16.3 22.5
+bMMI BN 27.4 15.3 21.4

posterior mean approximation approach is considerably worse
than the other two approaches, while UT-based sampling did
not considerably outperform the prior mean approximation ap-
proach, which was not expected. In the future, we shall in-
vestigate other sampling approaches. Finally, we observed that
the fMLLR transforms from the GMM system resulted in much
lower WER. This is probably because the features were decor-
related by STC, which is beneficial to GMMs with diagonal
covariances to estimate the fMLLR transforms.

4.2. Bottleneck features

To evaluate the speaker adaptation approaches on stronger sys-
tems, we trained the PLDA system using DNN bottleneck fea-
tures [31, 32] on the full Switchboard training set of 300 hours.
Our bottleneck features were extracted from a DNN acoustic
model, with 6 hidden layers of 2048 hidden units, except the
fifth hidden layer which is the bottleneck layer of 40 hidden
units. In order to evaluate the effect of speaker adaptation in
PLDA and GMMs using the bottleneck features, we did not ap-
ply a feature space speaker transformation when training the
bottleneck DNN, in case that the bottleneck features themselves
were already speaker normalised. The input features for the
DNNs were 11 concatenated 39-dimensional MFCC vectors.
We also report results using the standard DNN hybrid model
without a bottleneck layer (Table 3). We observed that the two
DNN systems achieved similar WERs.

We used the prior mean approximation approach to estimate
the fMLLR transforms for the PLDA+SAT acoustic model. To
further improve the accuracy, the model was then trained dis-
criminatively using the boosted MMI criterion [33] for 3 itera-
tions. Table 3 compares the results of PLDA and GMM sys-
tems using bottleneck features, from which we can see that
the PLDA system can consistently obtain around 10% rela-
tive improvement, and is comparable or slightly better than
the DNN baseline. As a comparison, we have also shown the
WERs of GMM systems using the MFCC features. We ob-
serve that improvement form GMM+SAT over the speaker in-
dependent system is much larger relatively for MFCC features

Table 4: System combination and related results

System CHM SWB Avg
DNN hybrid baseline 28.5 14.9 21.8
GMM⊕PLDA 27.1 15.7 21.4
DNN⊕GMM 27.6 15.8 21.7
DNN⊕PLDA 26.4 14.2 20.5
DNN⊕PLDA⊕GMM 26.2 14.4 20.4
DNN hybrid (36M)[35] 27.1 15.1 21.2
DNN hybrid (36M) + dropout [35] 26.7 14.7 20.8
DNN hybrid (100M)[35] 26.7 14.7 20.7
DNN hybrid (100M) + dropout[35] 26.3 14.6 20.5
DNN hybrid + sMBR [37] - 13.3 -
DNN hybrid + fMLLR + sMBR [38] 24.1 12.6 18.4

than bottleneck features, probably because of the decorrelat-
ing effect of the global STC transform. To validate this hy-
pothesis, we retrained the GMM system using bottleneck fea-
tures, followed by a global STC transform. The improvement
from SAT is relatively larger in this case; however, the rela-
tive improvement is still much smaller than using the MFCC
features, and the GMM+STA+STC system is still worse than
the PLDA+SAT system. We have also trained the PLDA+SAT
system by cross adaptation where the fMLLR transforms were
borrowed from the GMM system. In this case, we obtained the
average WER 22.4%, which is comparable to PLDA+SAT us-
ing self-estimated fMLLR transforms.

4.3. System combination

Finally, we investigate if the GMM, DNN and PLDA systems
are complementary to each other. We used minimum Bayes
risk decoding [34] implemented in Kaldi for system combi-
nation by combing the word lattices from each sub-system.
As shown in Table 4, combining the GMM system can only
marginally improve the DNN and PLDA systems on the Call-
Home subset, while making them worse on the Switchboard
subset. The PLDA system, however, is highly complementary
to the DNN system, and results in 1.3% absolute improvement
on average. We have also shown some recent reported results
on Switchboard using DNN hybrid acoustic models. In [35],
it is shown that increasing the size of DNN from 36 million to
100 million parameters and using dropout regularisation [36]
only marginally improve the accuracy, while sequence training
and feature space speaker adaptation can significantly reduce
the WER [37, 38]. In the future, we shall investigate applying
our fMLLR transforms for feature space adaptation of DNN hy-
brid models using different types of features.

5. Conclusions
In this paper, we have developed a speaker adaptation ap-
proaches for PLDA acoustic models. Our methods circumvent
the difficulty and complexity of full covariance speaker adap-
tation by taking point approximations of the observation la-
tent variable when estimating the fMLLR transformations. Our
approaches were evaluated on the Switchboard conversational
telephone speech transcription task, and we have studied both
MFCC and DNN bottleneck features. The fMLLR estimation
approaches are simple to implement, require little additional
computation, and our results demonstrate that these approaches
are efficient. Given the flexibility of PLDA acoustic models in
using different types of acoustic features, in the future we shall
investigate feature-space adaptation for other feature types (e.g.
log filter-bank features) and study cross adaptation for DNN hy-
brid models.
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