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Abstract

This paper introduces a novel form of parametric synthesis that
uses context embeddings produced by the bottleneck layer of
a deep neural network to guide the selection of models in a
rich-context HMM-based synthesiser. Rich-context synthesis
– in which Gaussian distributions estimated from single lin-
guistic contexts seen in the training data are used for synthesis,
rather than more conventional decision tree-tied models – was
originally proposed to address over-smoothing due to averag-
ing across contexts. Our previous investigations have confirmed
experimentally that averaging across different contexts is in-
deed one of the largest factors contributing to the limited quality
of statistical parametric speech synthesis. However, a possible
weakness of the rich context approach as previously formulated
is that a conventional tied model is still used to guide selection
of Gaussians at synthesis time. Our proposed approach replaces
this with context embeddings derived from a neural network.

Index Terms: speech synthesis, hidden Markov model, deep
neural networks, rich context, embedding

1. Introduction
HMM speech synthesis systems offer a flexible and adaptable
way to synthesise speech. However the naturalness of these
systems is consistently rated below natural speech and unit se-
lection systems as observed in the evaluation results from nu-
merous Blizzard Challenges over many years [1, 2, 3, 4]. Many
explanations have been given for the causes of this [5, 6, 7, 8]
however few formal investigations have been performed.

In previous work, we did formally investigate several hy-
potheses, including the effects of: over-smoothing of the spec-
tral envelope as a result of averaging over multiple speech sam-
ples from differing contexts [9], temporally over-smoothed pa-
rameter trajectories as a result of maximum-likelihood param-
eter generation (MLPG) [10, 11, 9], parameter generation with
poor global variance [10, 11, 9], vocoding[12, 11, 9] and inde-
pendant modelling of parameter streams[12, 11], among others.

The most striking finding of these investigations was that
temporal over-smoothing does not have as strong effect on
speech quality as was previously believed, but rather that the
gap between standard HMM speech synthesis systems and
vocoded speech might be significantly closed by avoiding the
averaging of speech samples across differing linguistic contexts.
Motivated by this finding, we now propose a novel form of
statistical parametric speech synthesis that avoids this harmful
across-contexts averaging.

2. Motivation
Our previous work has focused on the perceptual effects intro-
duced by modelling in statistical parametric speech synthesis
[10, 12, 11, 9]. From these investigations, the effect of averag-
ing across differing linguistic contexts (as is done in all decision
tree-clustered HMM synthesis systems) was identified as intro-
ducing a very substantial drop in quality. Specifically, in [9] we
reported a large perceptual degradation when moving from an
oracle condition where mean parameter values were calculated
by only averaging within the same context compared to a stan-
dard decision tree-clustered tied-parameter HMM system (built
as per the HTS demo recipe).

This oracle system calculated the Gaussian mean values
(for static, delta and delta-delta acoustic features) from the
acoustic features (i.e., vocoder parameters) of a recording of
the test sentence. The synthetic speech was then created by us-
ing MLPG on this sequence of Gaussian means, with variance
values coming from the conventional HMMs. Of course, this
oracle system is of no use for actual text-to-speech because it
is impossible to have examples in the training data that exactly
match all required contexts for every test sentence. However,
it motivates the system presented here that – like existing so-
called “rich-context” systems – avoids averaging across linguis-
tic contexts to train the Gaussian means.

3. Prior work
There are two notable examples of systems that also aim to re-
move the effects of across-context averaging. The first is simply
unit selection synthesis, where individual tokens are used, with-
out averaging. Unit selection synthesis also avoid vocoding,
another limitation on the quality of parametric speech synthesis
[12, 11, 9]. The other example is rich-context statistical para-
metric speech synthesis systems [13, 14, 15, 16].

The term ‘rich-context’ refers to models which are trained
only on samples where the context matches exactly and there-
fore avoids averaging across differing contexts. The primary
example is [13], in which Gaussian mean values are calculated
within each unique context found in the training data, with vari-
ance values being tied in the usual way1. This system would
appear to be very close to our previously investigated oracle
within-context-averaging system [9]. We now examine how this
system selects a suitable rich-context model to use at synthesis
time, given that exact matches to the required contexts within a
test sentence are extremely unlikely to be available.

1In practice, such a system is easy to derive from a conventional
tied system, simply by untying all parameters, then performing further
training in which only the means are updated.



4. Conventional rich context system
The system introduced in [13] uses the distribution (i.e., Gaus-
sian) selected by the standard tied decision tree as a reference.
It then finds the closest untied rich-context model (from a pre-
selected subset of all possible models) to this reference, using
equation 2 to compute divergence between the reference distri-
bution and each of the rich context models. This equation, as de-
scribed in [17], is an adapted version of Kullback-Leibler diver-
gence (KLD) for calculating divergence between multi-space
probability distribution HMMs (MSD-HMMs) and can there-
fore be applied to both spectrum (S) and pitch (f0) parameters
independently.
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p and q are the reference and pre-selected HMM states respec-
tively, w0 and w1 are the prior probabilities of unvoiced and
voiced respectively (for spectrum w0 ≡ 0 and w1 ≡ 1), µ
and Σ are the mean and covariance of the Gaussian distribu-
tions respectively and | · | indicates the determinant of a matrix.
The divergence for spectrum (DS

KL(p||q)) and pitch parame-
ters (Df0

KL(p||q)) are then summed together using equation 1 to
provide the final divergence score DS+f0

KL (p||q). These equa-
tions are applied in a state-wise fashion. All divergence values
across the test phoneme (5 states) are added together to arrive
at a single value per phoneme. The rich-context model (i.e., all
5 states in that model come from the same context) with lowest
total divergence is then selected

4.1. Implementation issues

One issue encountered when using this formula with rich con-
text models, but unreported in [13], is that rich context models
are generally either completely voiced or unvoiced, making ei-
ther w0 or w1 equal to zero. In our replication of Yan2009,
where this occurs, a small number (0.001) was added to or sub-
tracted from w0 and w1 to ensure a division by zero never takes
place. The problem of zero divisions also appears in the spec-
trum calculation where w0 ≡ 0 and w1 ≡ 1; in this case
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was set to 0.

Also the adaptation to enable the KLD algorithm to be
used for MSD-HMMs means that the divergence measure is no
longer symmetric; so DKL(p||q) and DKL(q||p) were aver-
aged together to give the final divergence score. This was not
mentioned in [13], so it can only be assumed that this was how
the original implementation was done.

4.2. Critique

The reference distribution used in [13] is a standard tied model.
That is, the system chooses the rich context model that is most
similar to the model that would be used in a conventional sys-
tem. This is counter-intuitive. As we know from [9], this tied
model is known to be of poor quality as a result of averaging

across different contexts and therefore would seem to be a poor
reference for rich-context model selection. The whole point of
using rich context models is to get away from the tied model,
not to find a model that is as close as possible to it.

As mentioned above, the system in [13] selected only from
a subset of all possible rich-context models: only contexts
matching the triphone of the target context, and if no matches
are available this is expanded to biphone match. The need for
pre-selection was given as leading to a ‘reasonable size of the
search space’ [13].

5. Proposed bottleneck-driven system
Our proposed system is inspired by that in [13], however does
not use the tied model as a reference for rich context model
selection. Instead, it performs selection using an acoustically-
supervised embedding of the linguistic context, which we derive
from the bottleneck layer of a Deep Neural Network (DNN)
speech synthesis model [18].

The activations at the bottleneck layer of this network com-
prise a very compact (e.g., 32-dimensional) feature vector that
has been learnt over the training data; such a feature vector is
often termed an ‘embedding’ [19].

Each unique input to the DNN (i.e., each unique linguis-
tic context) leads to a particular bottleneck feature vector. That
is, we can derive a compact vector-space representation of any
linguistic context, including those not seen in the training data.
We use distance in this vector space as the way to select rich-
context models at synthesis time. The DNN-derived embedding
is essentially a compression of the linguistic features, but impor-
tantly one that has been learned in conjunction with predicting
the acoustics. So, for example, acoustically-irrelevant linguistic
features will be ignored, and other features will be ‘de-noised’
and de-correlated.

Using the speech parameter space to calculate perceptual
distance – which is effectively what the system in [13] does –
has been previously raised by Taylor, who is ‘uneasy about the
use of cepstral space to represent the perceptual space’ [20]. In
our proposed system, an embedding of the linguistic space, as
learnt by a DNN, is used instead.

Our proposed bottleneck-guided rich-context system has
the added benefit that we are no longer constrained by needing
to use speech parameters at the output layer of the DNN, since
it is to be used only for deriving the bottleneck features. For
example, we could use perceptually-motivated features instead
of vocoder parameters; this is future work.

Various measures could be used, at synthesis time, to find
the closest rich-context model (in bottleneck feature space) for
an unseen context, this can be done in a number of ways.
Here we present two possibilities: Euclidean distance and KLD.
First, we give more details of how the bottleneck features are
derived.

5.1. Bottleneck features

To generate bottleneck features, we used a feed-forward neu-
ral network with six hidden layers. Each layer had 1024 hid-
den units except that the second hidden layer was set as a bot-
tleneck layer which had only 32 hidden units, as in our pre-
liminary experiments we found that using the second layer as
the bottleneck layer achieved the best performance for DNN-
based speech synthesis in terms of acoustic feature distortions.
More details about the input and output features and implemen-
tations of DNN can be found in [18]. The input to the DNN



includes HMM state-position (i.e., sub-phoneme) and frame-
within-current-state counter-based features. Bottleneck features
were pre-computed for all frames in the training data using a
forward pass, and the mean and variance of the features was
computed per rich-context HMM state; these distributions were
then stored with the rich-context HMM.

5.2. Euclidean distance selection

The Euclidean distance between the bottleneck features com-
puted for a given state in the test sentence, and the stored fea-
tures for all the rich-context states is:

D(b, g) =

NX
n=1

|| bn − µg ||2, (3)

where b is the frame-level sequence of bottleneck features for
the current state in the test sentence, g is the Gaussian distri-
bution (with mean µg) of bottleneck features for a candidate
rich-context model and N is the duration (in frames) of the cur-
rent test sentence HMM state. The distance for each state in the
current phoneme is summed and the phone-sized rich-context
model with the smallest Euclidean distance is selected (i.e., all
5 states are taken from the same rich-context model).

5.3. Kullback Leibler divergence selection

The KLD [21] between distribution f of the bottleneck features
computed for the frames corresponding to a given state in the
test sentence, and distribution g, is calculated as:
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where µ and Σ are mean and covariance and d is the dimension-
ality (32 in this case) of the bottleneck feature vector. As with
the Euclidean distance, the KLD for each sub-phonetic state is
summed over the phoneme and the closest model chosen. Vari-
ance values were floored to 1% of the global variance. A sym-
metric version of KLD was used in practice: the average of
DKL(f ||g) and DKL(g||f).

6. Experiments
6.1. Implementation

We built a variety of system configurations, shown in Table 1,
and compared them in a listening test. We created a best-effort
replication of the system described in [13], one with tri-phone
(backing off to bi-phone where necessary) pre-selection as per
the original system and another with more relaxed bi-phone
(backing off to mono-phone where necessary) pre-selection.
The latter system has a wider set of rich-context models to se-
lect from, per test sentence phoneme, and so should be able to
choose a model that is closer to the tied model reference. For
that reason, we hypothesise that this will actually sound worse
than the more constrained system (even though the reasons for
pre-selection given in [13] were only in regard of computational
cost). The average pre-selection candidate set size over a set of
test sentences is shown in Table 2.

No pre-selection constraints were used in any of the pro-
posed systems (E, KL, ETS, KLTS), to fully test the ability of
the DNN to ‘embed’ the required linguistic information into the
bottleneck features.

Table 1: Conditions included in listening test
ID Description Postfilter
N Natural speech n/a
V Vocoded speech n/a
D Stacked bottleneck DNN system [18] PF
H Standard tied HMM speech (HTS demo) GV
F HMM speech w/ fully untied tree (MDL = 0) PF

– variance parameters from system H
CT Rich context system [13] – tri-phone pre-selection PF
CB Rich context system [13] – bi-phone pre-selection PF
E Proposed system w/ Euclidean distance (section 5.2) PF

KL Proposed system w/ KLD (section 5.3) PF
ETS Proposed system w/ Euclidean distance (section 5.2) PF

– source parameters from system H
KLTS Proposed system w/ KLD (section 5.3) PF

– source parameters from system H

For comparison, a rich-context system guided by a decision
tree (rather than the method in [13] or our proposed method)
was created (system F) by growing the decision tree with the
MDL factor set to 0; this tree has one leaf per unique context
seen in the training data. Variances were borrowed from the
standard tied system (H).

2400 sentences from a male speaker of British English were
used for training all systems [22]. 60 unseen Harvard sentences
were used for testing. STRAIGHT [23] was used for speech
analysis and the postfilter scaling factor was fixed to 1.2 for
all systems (where applied). For all systems, natural durations
derived by forced alignment, were used. Before presentation
to listeners, all utterances were volume normalised [24]. The
decision of whether to use a postfilter or GV was made case-
by-case for each system, choosing whichever sounded best in
informal listening.

6.2. Experimental setup

The listening test was conducted using the MUSHRA method-
ology [25], with the same set up as [12]. In MUSHRA, the same
sentence is presented to the listener under all conditions, on a
single screen. Each condition is then scored between 0 (com-
pletely unnatural) to 100 (completely natural). This paradigm
was originally developed to evaluate audio codecs and there-
fore allows small differences between conditions to be heard by
the listener and for them to use knowledge of the full range of
conditions when rating each one. Natural speech is provided as
a hidden (i.e., listeners are not told which condition this is) ref-
erence and acts as an upper anchor. Listeners are instructed to
rate natural speech, which appears in a random position among
the conditions, at 100. Ordinarily there is also a lower anchor
when this paradigm is used for audio codecs; however a lower
anchor is to difficult to define for synthetic speech so was not
used here (as was also the case in [12]).

Stimuli played to listeners along with listener responses can
be found at [26].

Table 2: Average candidates per state over a test set
CT CB

overall average 35 196
tri-phone search 29 n/a
bi-phone search 54 193

centre phone search 982 982



7. Results
Results from the MUSHRA test can be seen in Figures 1 and
2 showing the absolute values awarded to the conditions and
rank order respectively. The dashed green lines added to the
box plots show the mean values. All tests for significant dif-
ferences between conditions applied Holm-Bonferroni correc-
tion due to the large number of condition pairs to compare. All
conditions are significantly different from all others in absolute
rating, except between: H and F, KL and E, KL and ETS, KL
and KLTS, ETS and KLTS. Significant differences are in agree-
ment using a t-test or Wilcoxon signed-rank test at a p value of
0.05. There is a disagreement in statistical significance between
conditions F and E: the Wilcoxon signed-rank test finds the dif-
ference in judgements to be statistically significant whereas the
t-test doesn’t. All conditions are significantly different in rank
order except between: H and F, KL and E, ETS and KLTS.
These significant differences are in agreement using the Mann-
Whitney U test and the Wilcoxon signed-rank test at a p value
of 0.05. There is a disagreement in statistical significance be-
tween conditions H and E: the Mann-Whitney U test finds the
difference in judgements to be statistically significant whereas
the Wilcoxon signed-rank test doesn’t.

One point of surprise is the ratings given to the CT condi-
tion. In informal listening, we found this to be of higher qual-
ity than the H and F conditions; it is possible that our expert
listener judgement is out of line with the paid listeners’ non-
expert opinions on naturalness [27]. We suspect that the CT
system removes much of the buzzy quality present in system
H, but in doing so has made other imperfections audible which
are otherwise masked by this buzziness, therefore reducing the
perceptual scores from naı̈ve listeners.

No significant improvement in absolute score is observed
when source parameters (log fundamental frequency and band
aperiodicity) from the standard tied models are used in systems
ETS and KLTS compared with KL. This indicates that by per-
forming a KLD search for suitable rich context models we are
already incorporating some prosodic information (close to that
of tied models). The wide range of scores shown on the boxplot
for systems V to KLTS shows that this task of scoring these sys-
tems is difficult, presumably because they are all of quite high
naturalness and these variances are caused by different systems
being better or worse at differing sentences presented.

The difference in naturalness between systems CT and CB
indicate that the pre-selection implemented in [13] also steers
the system towards selecting better models. This highlights the
shortcomings of the reference tied model (system H) used in this
system. Conversely, the proposed methods (conditions E, ETS,
KL & KLTS), which perform a global search over the training
corpus using bottleneck features which embed linguistic context
information, allow these systems to select better rich-context
models.

The stacked DNN bottleneck synthesis system presented in
[18] outperforms all statistical parametric systems tested in this
investigation, indicating that, while great improvements in qual-
ity have been made to HMM synthetic speech, more work is
required. Finally, as already found in previous investigations
[11, 12, 9], Figure 1 shows that vocoded speech is already sig-
nificantly less natural than the original waveform.

8. Conclusions and future work
The proposed system provides clear improvements on both
standard tied HMM models and the previously proposed rich
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Figure 2: Boxplot of rank order of conditions from MUSHRA
test

context model system [13]. Although a state-of-the-art DNN
setup is better than all HMM systems here, there is further room
for improvement in the HMM systems, including the use of an
embedding that is specifically designed for the task, not just de-
rived from a DNN that was optimised for synthesis. For exam-
ple, embeddings could be derived from a DNN that no longer
needs to output speech parameters, but perhaps uses more per-
ceptually relevant output features.

The HMM paradigm is much more transparent that the
DNN paradigm. Rich-context model parameters can be related
directly back to frames in the training data, allowing diagnosis
and fault-finding to be carried out. This link to the training data
also suggest simple and obvious ways to build hybrid systems
(i.e., statistical model-guided concatenation). A final sugges-
tion for future work would be to investigate speaker adaptation
for a rich-context HMM-based system.
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