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Abstract
The Continuous Wavelet Transform (CWT) has been re-

cently proposed to model f0 in the context of speech synthe-
sis. It was shown that systems using signal decomposition with
the CWT tend to outperform systems that model the signal di-
rectly. The f0 signal is typically decomposed into various scales
of differing frequency. In these experiments, we reconstruct
f0 with selected frequencies and ask native listeners to judge
the naturalness of synthesized utterances with respect to natural
speech. Results indicate that HMM-generated f0 is compara-
ble to the CWT low frequencies, suggesting it mostly generates
utterances with neutral intonation. Middle frequencies achieve
very high levels of naturalness, while very high frequencies are
mostly noise.
Index Terms: speech synthesis, prosody, f0 modeling, continu-
ous wavelet transform, perceptual experiments

1. Introduction
Wavelets have been used in a variety of applications in Speech
Processing for a number of years [1]. Recently, there has been
a growing interest in the application of wavelets for the analysis
and modeling of prosody in the context of statistical paramet-
ric speech synthesis. For example, wavelets have shown to be
useful for the automatic annotation of prominence [2], as well
as a pre-processing step for the modeling of f0 in HMM-based
synthesis [3][4], and voice conversion [5].

However, in most of these contributions [3][4][5], the Con-
tinuous Wavelet Transform (CWT) is used to decompose the f0
signal into 10 scales, each approximately 1 octave apart. These
scales are used to model f0 without a clear understanding of
their role in the overall signal. For example, [3] associate each
pair of scales with a linguistically-motivated level (phones, syl-
lables, words, phrases, utterance), although modeling still takes
place at frame-level. In [4], the same decomposition is used,
but the Discrete Cosine Transform (DCT) is used to model each
scale at a supra-segmental level.

The general conclusion appears to be that approaches us-
ing signal decomposition tend to outperform approaches that
do not. It was also seen in [4] that some scales are easier to
predict than others, although their individual importance to the
reconstructed signal is still not fully understood. Therefore, it
is the goal of this work to explore the relevance of each of these
wavelets scales (or frequencies) and their contribution of the
perceived naturalness of speech.

We hypothesize that, on expressive datasets, short-term
modeling approaches (such as MSD-HMM) tend to average
most f0 variation and generate a mostly neutral contour that
is comparable to the low frequencies of the CWT. Approaches

that use signal decomposition outperform these short-term ap-
proaches because, on top of the easily predictable low frequen-
cies, there is always some improvements from the explicit mod-
eling of middle-frequencies.

We assume a 10-scale wavelet-based decomposition of f0.
Higher scales capture the CWT low frequencies and lower
scales capture the CWT high frequencies. In this work, we in-
dex the decomposition by frequency, such that lower indexes
correspond to low frequencies and higher indexes to high fre-
quencies. Note that these these frequencies reflect the frequency
of the wavelet component and are unrelated to the pitch range
of the speaker. With this in mind, we propose to explore the
following hypotheses in a series of evaluations:
• Listeners respond more to CWT middle frequencies (indexes

5 to 8) and associate them with higher levels of naturalness
when compared to other CWT frequencies.

• Listeners do not respond much to the CWT low frequencies
(indexes 1 to 4) and they achieve comparable naturalness to
f0 synthesized from an HMM-based system.

• High CWT frequencies (indexes 9 and 10) are mostly noise
and do not contribute significantly to perceived naturalness.

To test these hypotheses, we run four perceptual experi-
ments. In the first experiment we measure listeners’ percep-
tion of selected wavelet ranges under a specific task. By ask-
ing participants to judge which word appears more prominent
in an utterance, we test whether or not the wavelet scales are
able to separate different prominence effects. This is a differ-
ent approach to the task described in [2]. In the second exper-
iment, we give listeners different utterances and ask them to
judge whether or not they are similar in terms of naturalness.
Considering the ratio of dissimilarity between wavelet scales,
we use Multidimensional Scaling (MDS) [6][7] to establish a
perceptual distance between all scales and natural speech. The
final two experiments measures naturalness by asking listeners
how much each utterance resembles natural speech. In the first
of these, we run a traditional Mean Opinion Score (MOS) test,
where participants are asked to rate an utterance on a scale of 1
to 5. In the second experiment, we run a MUltiple Stimuli with
Hidden Reference and Anchor (MUSHRA) test [8], in which
listeners rate an utterance against a reference and against all
other conditions. The key difference between the MOS and
MUSHRA evaluations is that, in the first, participants rate an
utterance without any reference. In the second test, participants
are given a reference and are asked to judge each sample against
it and against all conditions.

Section 2 introduces the CWT and section 3 details each
condition and f0 reconstruction. The following sections of the
paper detail each experiment, and we conclude with a discus-
sion of the results in section 8.



2. The continuous wavelet transform
A wavelet is a short waveform with finite duration averaging to
zero. The continuous wavelet transform (CWT) can describe
the f0 signal in terms of various transformations of a Mother
Wavelet. Scaling the Mother Wavelet, the transform is able to
capture high frequencies if the wavelet is compressed, and low
frequencies if it is stretched. The process is repeated by trans-
lating the Mother Wavelet.

The output of the CWT is an MxN matrix where M is the
number of scales and N is the length of the signal. The CWT
coefficient at scale a and position b is given by:

C(a, b; f ;ψ) = a−1/2

Z ∞
−∞

f(t)ψ(
t− b
a

)dt (1)

where f is the input signal and ψ is the Mother Wavelet.

3. F0 reconstruction
The CWT is sensitive to discontinuities in the f0 contour, so
the signal was linearly interpolated over unvoiced regions. The
interpolated log-f0 contour was then reduced to zero mean and
unit variance, as this is required by the wavelet transform. To
decompose f0, we use a decomposition approach identical to
that described in [3] and [4], using 10 wavelet scales, each one
octave apart. For reconstruction, we use a variation of the ad
hoc reconstruction formula proposed by [3]:

f0(x) =

10X
i=1

wiCi(x)(i+ 2.5)−5/2 (2)

where scale 1 corresponds to the highest frequency scale
and wi is the weight given to scale i where wi ∈ {0, 1}. Table
1 shows all experimental conditions with scales indexed by in-
creasing frequency. These frequencies are related to the wavelet
component and not the pitch range of the speaker. For each con-
dition, f0 is reconstructed from the wavelet domain zeroing out
selected frequencies. For example, for condition 1-2, the weight
vector would be w = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1].

Condition Description Freq. (Hz)
natural Vocoded speech using natural parameters -

all All f0 frequencies. 0.1-50
1-2 Low frequencies. Scales indexed at 1 and 2. 0.1-0.2
3-4 Low frequencies. Scales indexed at 3 and 4. 0.4-0.8
1-4 All low frequencies. Scales indexed at 1, 2, 3, and 4. 0.1-0.8
5-6 Middle frequencies. Scales indexed at 5 and 6. 1.6-3.2
7-8 Middle frequencies. Scales indexed at 7 and 8. 6.3-13
5-8 All middle frequencies. Scales indexed at 5, 6, 7, and 8. 1.6-13

9-10 High frequencies. Scales indexed at 9 and 10. 25-50
MSD-HMM f0 signal predicted from an MSD-HMM. -

Table 1: Experimental conditions with approximate CWT fre-
quency ranges.

4. Experiment 1: prominence
4.1. Data

For this experiment, we have recorded a native speaker reading
the same utterance given different stimuli. All sentences con-
sisted of 3 content words and had similar syntactic structure.
The stimuli was chosen in order to suggest a different pitch ac-
cent location in the response. We have recorded 10 different
utterances in 4 different contexts for a total of 40 utterances.
Table 2 shows an example of stimuli and responses for one of
the utterances.

stimulus response
... John won at Mary’s.
Paul won at Mary’s. John won at Mary’s.
John lost at Mary’s. John won at Mary’s.
John won at Kate’s, John won at Mary’s.

Table 2: Stimuli and responses for one utterance in the data set.

Figure 1: Accuracy results.

4.2. Design

For each of the 40 utterances, speech parameters were extracted
using STRAIGHT [9]. When synthesizing the test data, all con-
ditions except natural use mel-cepstral, aperiodicity, and du-
ration parameters from the neutral response. This experiment
relies on copy synthesis. It does not use synthesized parame-
ters. The reconstructed f0 contour was aligned with DTW at
syllable level to the parameters from the neutral response. This
ensures that listeners will not respond to durational or inten-
sity cues when judging the utterances, as the only difference
between them is f0. Utterances from the natural condition use
all original parameters. A total of 400 unique utterances (10
sentences x 4 contexts x 10 conditions) were gathered. Each of
the 25 participants listened to a randomized subset of 80 utter-
ances. They were asked to select which of the 3 words appears
more prominent or salient in each utterance, with the option to
indicate that all words appear equally prominent.

4.3. Results

From the expected 2000 judgments (25 participants x 80 ut-
terances), 23 were missing. This left us with an average of
198 judgments per condition, with each unique utterance hav-
ing been judged either 4 or 5 times. To analyze the results, we
used an approach similar to that described in [10]. That is, we
considered the results from the natural condition as the gold set
to which we measured the accuracy of all other conditions. Fig-
ure 1 shows the accuracy results from the experiment. Notes on
the graph show the result of a binomial test assuming a chance
accuracy of 25%. All conditions using the CWT middle fre-
quencies achieve accuracy that is significantly above chance.
Some conditions achieve a smaller, although significant effect,
where we would expect not to see any. The reason for this might
be how we are computing the results. When faced with uncer-
tainty, listeners might default to an answer (that all words are
equally prominent, for example).

5. Experiment 2: similarity
5.1. Data

To conduct the remaining experiments, we have used the freely
available audiobook A Tramp Abroad, written by Mark Twain



Figure 2: Two-dimensional representation of the dissimilarity
matrix as estimated by MDS. Each point represents one con-
dition and distances are representative of their dissimilarity in
terms of naturalness.

and first published in 1880, available from Librivox1. Audio-
books are a rich source of speech data, as the reader mimics
the voices of characters and attempts to convey some type of
emotion depending on the circumstances. The data has been
pre-processed according to the methods described in [11] and
[12]. We have used a manually selected subset consisting only
of narrated speech, thus setting aside direct speech data. The
reason for this is that we intend to focus only on expressive read
speech and avoid possible changes of speaking style and voice
characteristics contained within the direct speech portions of the
book.

A standard 5 state left-to-right HMM system was trained
on roughly 5000 utterances. 20 utterances not in the training
set were chosen for these experiments. Except for natural, all
conditions used the same mel-cepstral, aperiodicity, and voic-
ing parameters predicted from the HMM system. Duration is
derived by force-aligning the data. The remaining conditions
vary only f0, according to table 1.

5.2. Design

All 20 utterances were synthesized for each of the 10 condi-
tions described in table 1. 10 native listeners participated in the
experiment, each rating a total of 144 utterance pairs. Partici-
pants were instructed to listen to each pair carefully and judge
if the pair is similar or different in terms of naturalness. Each
pair given to the participants consisted of different utterances
and different conditions. Within any three consecutive pairs,
the same condition and utterance is not repeated. This prevents
the task from being too easy and discourages participants from
judging all comparisons as different[13][14].

5.3. Results

Considering the 45 distinct condition pairs, each pair was
judged at least 32 times. A 10x10 dissimilarity matrix was con-
structed, indicating the fraction of times each pair was judged as
different. Multidimensional Scaling (MDS) [6][7] was used to
embed the dissimilarity matrix into a 2-dimensional space. The
Euclidean distances between points in this space is representa-
tive of their perceptual distances. We have used the function

1http://librivox.org

mdscale from the Matlab statistic toolbox with Kruskal’s nor-
malized stress1, with a stress value of 0.086. Figure 2 shows the
two-dimensional representation of the 10 conditions as judged
by the participants. Distances between points are representative
of their dissimilarity in terms of naturalness. Listeners naturally
clustered CWT low frequency conditions (1-2, 3-4, 1-4), high
frequency conditions (7-8 and 9-10), and middle frequency con-
ditions (5-6, 5-8). The condition with all CWT frequencies ap-
pears to be closer to the conditions using the middle ones, with
a greater distance from natural speech, which was surprising.

6. Experiment 3: MUSHRA
6.1. Design

In the MUSHRA test, participants are asked to rate all condi-
tions of the same utterance in parallel from 0 (very poor) to
100 (very natural). Each condition has one slider and listeners
are given the natural condition as reference. This utterance is
also included in the unlabeled conditions and participants are
instructed to judge at least one utterance as completely natural.
This fixes the high end of the scale and all conditions are judged
in relation to this.

We use the same data described in section 5.1. 10 native
listeners rated all 20 sets of 10 stimuli, each stimulus originating
from the conditions detailed in table 1. The order of the stimuli
was randomized for each participant.

6.2. Results

From the expected 200 sets, 48 were discarded due to the hidden
reference being judged as less than completely natural. These
were excluded from the analysis. Figure 3 illustrates the dis-
tribution of the remaining 152 sets for all utterances and par-
ticipants. Listeners ranked the CWT middle frequencies higher
than the CWT low or high frequencies, with the HMM gener-
ated f0 being comparable to the CWT low frequencies. Figure
4 shows the confusion matrix for Bonferroni-corrected pairwise
Wilcoxon sign rank test.

Figure 3: MUSHRA Test results.

Figure 4: MUSHRA Tests - Bonferroni-corrected pairwise
Wilcoxon sign rank test.



Figure 5: MOS Test results.

Figure 6: MOS Tests - Bonferroni-corrected pairwise Wilcoxon
sign rank test

7. Experiment 4: MOS
7.1. Design

In the MOS test, 25 participants were asked to rate each utter-
ance on a scale of 1 (completely unnatural) to 5 (completely
natural). No other instructions were given to the participants.
Therefore, unlike the MUSHRA evaluation, participants have
no reference against which to judge each utterance. All utter-
ances were randomized for each participant. We use the same
data described in section 5.1.2

7.2. Results

From the expected 1000 judgments, 1 was missing. Each
unique utterance was judged 5 times and all conditions had 100
judgments, except 1 condition which had an utterance with 4
judgments and a total of 99 scores. Figure 5 shows a boxplot
with the results for the MOS test. Listeners were quite con-
servative in the judgment of the natural speech, which has a
median of 4. It still performs higher than the remaining condi-
tions by the condition that reconstructs f0 with all frequencies.
Figure 6 shows the confusion matrix for Bonferroni-corrected
pairwise Wilcoxon sign rank test. The ranking of the conditions
is consistent with the one shown by the MUSHRA evaluation,
which suggests that the two tests are quite similar. However,
in the MUSHRA, participants are able to make direct pairwise
comparisons using a larger scale, so differences between each
condition are clearer.

8. Discussion and conclusions
The results from these evaluations support the initial hypothe-
ses. We see evidence that native listeners tend to prefer the
middle frequencies of the CWT when used to decompose the f0
signal. The 5th and 6th scales consistently show higher degrees
of naturalness when compared to the remaining scales. These
have been previously associated with the word-level [3] [4].

2Speech samples for all experiments can be found here:
http://homepages.inf.ed.ac.uk/s1250520/samples/interspeech15.html

Figure 7: Unit (top) and peak (bottom) rate per second for se-
lected units and scales.

Figure 7 shows distributions of word rates per second and
peak (local maxima) rates per second in the CWT middle fre-
quencies. Rates are computed at utterance level on 5000 utter-
ances. Although these might change depending on speaker or
speaking rate, the 6th scale matches the distribution of words,
suggesting it could be modeled at word level. The 5th scale is
best modeled at a level that is higher than the word. The dis-
tribution of intonational phrases could be associated with the
4th-scale. Therefore the 5th lies at a level higher than the word,
but lower than the intonational phrase. This suggests that these
middle frequencies contain most of the information that listen-
ers associate with naturalness in expressive speech and might
provide a suitable candidate when exploring supra-segmental
models of f0. The 7th and 8th scale were also expected to rank
higher than others, but these results show that they mostly re-
semble the higher frequencies. These have been associated with
the syllable-level [3] [4], but figure 7 shows that the 7th scale
does not match syllable rates.

Regarding the low frequencies, we observe that they behave
as expected. In the MOS and MUSHRA evaluation, no signifi-
cant differences were found between the ratings of all the lower
scales. Similarly, we have failed to observe significant differ-
ences between these frequencies when comparing them to the
HMM condition. This suggests that HMMs are not very effec-
tive at modeling expressive f0 at frame-level. A possible reason
for this might be the focus on frame-level modeling combined
with a lack of understanding of proper supra-segmental contexts
[15][16]. These models tend to average different effects, caus-
ing the generated contour to be neutral and similar to the natu-
ral low frequencies. But HMM generated f0 is not completely
similar to the lower scales, as the results from experiment 2 in-
dicate. As for the high frequencies, we observe that they are
mostly noise and do not contribute much to the naturalness of
synthesized speech. This might explain the lack of improve-
ments when modeling them at frame-level with HMMs, while
using supra-segmental approaches to the other scales [4].

As future work, we propose to explore the CWT middle
frequencies to model f0 at a supra-segmental level.

Acknowledgements: This work has been conducted with
the support of the Swiss NSF under grant CRSII2 141903: Spo-
ken Interaction with Interpretation in Switzerland (SIWIS).



9. References
[1] M. H. Farouk, Application of Wavelets in Speech Processing.

Springer, 2014.

[2] M. Vainio, A. Suni, D. Aalto et al., “Continuous wavelet trans-
form for analysis of speech prosody,” TRASP 2013-Tools and Re-
sources for the Analysys of Speech Prosody, An Interspeech 2013
satellite event, August 30, 2013, Laboratoire Parole et Language,
Aix-en-Provence, France, Proceedings, 2013.

[3] A. S. Suni, D. Aalto, T. Raitio, P. Alku, M. Vainio et al., “Wavelets
for intonation modeling in hmm speech synthesis,” in 8th ISCA
Workshop on Speech Synthesis, Proceedings, Barcelona, August
31-September 2, 2013, 2013.

[4] M. S. Ribeiro and R. A. J. Clark, “A multi-level representation
of f0 using the continuous wavelet transform and the discrete co-
sine transform,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2015. ICASSP 2015., 2015.

[5] G. Sanchez, H. Silen, J. Nurminen, and M. Gabbouj, “Hierarchi-
cal modeling of f0 contours for voice conversion,” in Fifteenth
Annual Conference of the International Speech Communication
Association, 2014.

[6] I. Borg and P. J. Groenen, Modern multidimensional scaling: The-
ory and applications. Springer Science & Business Media, 2005.

[7] C. Mayo, R. A. Clark, and S. King, “Multidimensional scaling of
listener responses to synthetic speech,” 2005.

[8] I. Recommendation, “1534-1: Method for the subjective assess-
ment of intermediate quality level of coding systems,” Interna-
tional Telecommunication Union, 2003.

[9] H. Kawahara, I. Masuda-Katsuse, and A. De Cheveigné, “Re-
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