
The NST–GlottHMM entry to the Blizzard Challenge 2015

O. Watts1, S. Ronanki1, Z. Wu1, T. Raitio2, A. Suni2,3

1Centre for Speech Technology Research, University of Edinburgh, UK
2Dept. of Signal Processing and Acoustics, Aalto University, Finland

3Institute of Behavioural Sciences, University of Helsinki, Finland
owatts@inf.ed.ac.uk, s.ronanki@sms.ed.ac.uk zhizheng.wu@ed.ac.uk

tuomo.raitio@aalto.fi, Antti.Suni@helsinki.fi

Abstract
We describe the synthetic voices forming the joint entry into
the 2015 Blizzard Challenge of the Natural Speech Technol-
ogy consortium, Helsinki University, and Aalto University. The
2015 Blizzard Challenge presents an opportunity to test and
benchmark some of the tools we have developed to address the
problem of how to produce systems in arbitrary new languages
with minimal annotated data and language-specific expertise on
the part of the system builders. We here explain how our tools
were used to address these problems on the different tasks of
the challenge, and provide some discussion of the evaluation
results. Some additions to the system used to build voices for
the previous Challenge are described: acoustic modelling us-
ing deep neural networks with jointly-trained duration model,
and an unsupervised approach for handling the phenomenon of
inherent vowel deletion which occurs in 3 of the 6 target lan-
guages.
Index Terms: statistical parametric speech synthesis, unsu-
pervised learning, vector space model, glottal inverse filtering,
deep neural network, glottal flow pulse library, schwa-deletion

1. Introduction
We here describe the synthetic voices used to synthesise speech
for the Natural Speech Technology1 consortium, Helsinki Uni-
versity and Aalto University’s joint submission to the 2015 Bliz-
zard Challenge. We make use of tools and techniques developed
for the Simple4All entries to the 2013 and 2014 Blizzard Chal-
lenges and further develop these. As with previous Challenges,
the 2015 Challenge provides an opportunity to test and bench-
mark the technology we have been developing; the production
of systems in arbitrary new languages with minimal language-
specific expertise on the part of the system builders remains a
central concern of our work.

Compared to our previous (Simple4All) entries, the text
processing and speech parameterisation steps are largely un-
changed. A notable exception is our attempt to detect schwa-
deletion based on acoustic evidence: this new development is
described in Section 2.1.2 below.

Last year, we introduced deep neural network (DNN) based
modelling of voice source into our system, while the rest of
the GlottHMM [1] parameters were generated using a standard
HMM-based speech synthesis framework. HMM acoustic mod-
els have several known deficiencies: data fragmentation due to
decision tree clustering, the assumption of independence be-
tween acoustic parameter streams where model clustering is

1http://www.natural-speech-technology.org

performed separately for each stream, and the assumption of
independence between coefficients within each stream where
diagonal covariance matrices are used. These false assumptions
affect complex parameterisations such as GlottHMM severely,
as vocal tract and voice source spectrum are separately mod-
elled with LSFs. In contrast, neural networks do not rely on
these assumptions, and we have thus used DNNs for all of our
acoustic modelling.

2. System Description
2.1. Text processing

The tools used for building TTS front-ends for our entry to this
year’s Challenge are an improved and extended version of those
used to prepare our entry to the last two years’ Challenges [2,
3]. The principal extension to our front-end is a module for
automatically detecting and predicting schwa-deletion, which
was used for three of the six target languages. Other parts of
the toolkit are similar or identical, and so much of the following
description very closely follows descriptions given in [2, 3].

The only language-specific input to our system is the data
used for training. This consisted of the audio data for each lan-
guage transcribed in plain orthography at the utterance level
which was distributed for the Challenge: 2 hours for Bengali,
Malayalam and Marathi and 4 hours for Hindi, Tamil and Tel-
ugu. In addition, we made use of large quantities of unannotated
text data for building word representations in an unsupervised
manner – this consisted of approximately 3.6, 15.9, 4.9, 1.9,
8.8 and 9.1 million tokens of text for Bengali, Hindi, Malay-
alam, Marathi, Tamil and Telugu, respectively, which we ob-
tained from Wikipedia.

Text which is input to the system is assumed to be UTF-8
encoded: given UTF-8 text, text processing is fully automatic
and makes use of a theoretically universal resource: the Uni-
code database. Unicode character properties are used to to-
kenise the text and characterise tokens as words, whitespace,
punctuation etc. Our front-ends currently expect text without
abbreviations, numerals, and symbols (e.g. for currency) which
require expansion.

2.1.1. Naive alphabetisation

We used the same method as in the 2014 Challenge to create a
naive alphabetisation of text input based on characters’ names
in the Unicode database [3]. Take for example the Hindi word,
prasid’dha, meaning ‘famous’:

!"स$
The Unicode representation of this token consists of eight enti-

ties whose names are as follows:

• DEVANAGARI LETTER PA

• DEVANAGARI SIGN VIRAMA

• DEVANAGARI LETTER RA

• DEVANAGARI LETTER SA

• DEVANAGARI VOWEL SIGN I

• DEVANAGARI LETTER DA

• DEVANAGARI SIGN VIRAMA

• DEVANAGARI LETTER DA

This representation already abstracts away from the ligatures
and variable ordering of the surface devanagari text. For exam-
ple, the <pra> conjunct is represented by the sequence <pa vi-
rama ra> and the graphical right–left ordering of the elements
<sa> and <i> is changed to the left–right direction of the rest
of the text. The alphabetic representations used in these names
(PA, RA, SA etc.) give a transcription which is used instead of
the Unicode characters, but several simple rules which capture
general knowledge about this family of scripts are used to mod-
ify the string of letters obtained. A LETTER’s inherent vowel is
altered when a modifier follows, a modifier being any letter with
VOWEL SIGN in its name, or VIRAMA, ANUSVARA or CAN-
DRABINDU. Vowel signs are used to replace the preceding let-
ter’s inherent vowel, VIRAMA to delete it, and ANUSVARA and
CANDRABINDU to nasalise it (which we represent by append-
ing m to the modified vowel). Applying these rules to the above
example yields the sequence P R A S I D D A.

2.1.2. Inherent vowel deletion

A well-known phenomenon of the Indo-Aryan language group
– which includes three of our target languages, Bengali, Hindi
and Marathi – is schwa deletion, where a character’s inher-
ent vowel is not pronounced, even though not suppressed by
a vowel sign or virama [4]. For example, the final <a> of the
Hindi word prasid’dha, mentioned above, is not pronounced.
As a particular concern or ours is to develop techniques which
can be applied across multiple languages to improve synthetic
speech whilst demanding minimal expert supervision, for this
year’s Challenge we developed a schwa deletion module for use
in these 3 languages. Rather than rely heavily on features de-
rived from expert knowledge of any of the individual languages,
we detect deletions of inherent vowels during forced align-
ment and predict them at run time using joint-multigram mod-
els [5]. We train our initial forced-alignment models (context-
independent Hidden Markov Models of the naively-produced
letters described above) by assuming that the inherent vowel is
always deleted word-finally and nowhere else. This assump-
tion is then refined by several iterations of forced alignment
and model retraining. In the forced alignment phase, the model
sequence is updated – acoustic evidence is used to determine
whether each instance of an inherent vowel not suppressed by
vowel signs or virama is pronounced by the speaker or deleted.
The output of the final iteration of forced-alignment is paired
with the full letter sequences to provide data for training a joint-
multigram model to map from the full letter sequences of words
to letter sequences with deleted schwa. This model is used to
create annotation of the training data and to produce schwa-
deleted letter sequences at run-time.

2.1.3. Unsupervised syllabification

The same simple module used in last year’s Challenge for im-
posing syllable-structure in an unsupervised way was also used
to prepare our current entry. As proposed by Mayer [6], we first
detected characters corresponding to vowels and consonants
with Sukhotin’s algorithm [7] from the alphabetised text. The
algorithm works on the assumption that in natural languages,
vowels and consonants tend to alternate, and the most frequent
letter corresponds to a vowel. Then, all word initial consonant
clusters with certain minimum frequency were collected to be
considered as legal syllable onsets also within words. Syllable
boundaries were then placed before the maximal legal onsets
within word internal consonant clusters, except that at least one
consonant was left as a coda of previous syllable if the clus-
ter contained more than one consonant. Vowel sequences were
also split with syllable boundary, if the mutual information of
adjacent vowels in text corpus was below a certain threshold.

2.1.4. Word and letter representations

As in our entry for the previous two years, our front-end makes
use of no expert-specified categories of letter and word, such
as phonetic categories (vowel, nasal, approximant, etc.) and
part of speech categories (noun, verb, adjective, etc.). Instead,
features that are designed to stand in for such expert knowl-
edge but which are derived fully automatically from the distri-
butional analysis of unannotated text (speech transcriptions and
Wikipedia text) are used. The distributional analysis is con-
ducted via vector space models (VSMs); the VSM was orig-
inally applied to the characterisation of documents for pur-
poses of Information Retrieval. VSMs are applied to TTS in
[8], where models are built at various levels of analysis (let-
ter, word and utterance) from large bodies of unlabelled text.
To build these models, co-occurrence statistics are gathered
in matrix form to produce high-dimensional representations of
the distributional behaviour of e.g. word and letter types in
the corpus. Lower-dimensional representations are obtained
by approximately factorising the matrix of raw co-occurrence
counts by the application of singular value decomposition. This
distributional analysis places textual objects in a continuous-
valued space, which is then partitioned by decision tree ques-
tions during the training of TTS system components such as
acoustic models for synthesis or decision trees for pause predic-
tion. For the present voices, a VSM of letters was constructed
by producing a matrix of counts of immediate left and right
co-occurrences of each letter type, and from this matrix a 5-
dimensional space was produced to characterise letters in the
alphabetised training text (obtained as described above). Token
co-occurrence was counted with the nearest left and right neigh-
bour tokens (excluding whitespace tokens); co-occurrence was
counted with the most frequent 250 tokens in the corpus. A 10-
dimensional space was produced to characterise word tokens.

Letter representations were used directly as features in deci-
sion tree based acoustic modelling. Word representations were
used by decision trees (along with other features such as pres-
ence of punctuation) to predict pauses at the junctures between
words. Data for training these trees are acquired automatically
by force-aligning the training data with their transcriptions, and
allowing the optional insertion of silence between words.

2.2. Acoustic Modelling

A rich set of contexts was created using the results of the anal-
ysis described in section 2.1 for each frame in the training data

for all languages. Features used include the identity of the letter
token to which the frame was aligned during forced alignment,
and the identities of its neighbours within a 5-letter window.
Additional features were the VSM values of each letter in the
window, fraction through HMM state, index of state within let-
ter, and the distance from and until a syllable boundary, word
boundary, pause, and utterance boundary.

Speech was parameterised with the GlottHMM vocoder [1],
consisting of glottal inverse filtering of the speech frame and
extracting the 30 line spectral frequency (LSF) coefficients of
the vocal tract as well as 10 voice source LSF coefficients,
harmonic-to-noise ratio (HNR) of five frequency bands, energy,
and fundamental frequency (F0). All of these features were
supplemented with their speed and acceleration coefficients;
these were used by a parameter generation algorithm devel-
oped for HMM-based speech synthesis [9] to obtain smoothly
varying vocoder parameter trajectories from the DNN’s out-
put. The resulting synthetic parameter trajectories were post-
processed with simple variance expansion [10] and LSF post-
filtering. F0 was processed by interpolating over short un-
voiced segments and with wavelet-based enhancement [11],
where mainly word-level pitch movement was enhanced, leav-
ing microprosody intact. DNN-based, gender-dependent glottal
flow models [12, 13] were taken from last year’s Simple4All
entry [3].

Data preprocessing and neural network training was per-
formed broadly as for the basic system described in [14]. 95%
of the frames labelled as silence were removed. The unvoiced
regions of the F0 track were interpolated, and voicing was rep-
resented in a separate stream. Linguistic input features were
normalised to the range [0.01, 0.99] and acoustic features stan-
dardised.

All systems made use of 6 hidden layers, each consisting of
1024 units with tanh non-linearities, and an output layer with a
linear activation function. Network parameters (hidden layer
weights/biases, output layer weights/biases) were initialised
with small non-zero values, and the network was then optimised
with stochastic gradient descent to minimise the mean squared
error between its predictions and the known acoustic features
of the training set. A small L2 regularisation was applied to
the hidden layer weights. There were 256 frames in each mini-
batch. For the first 15 epochs of training, a fixed learning rate
of 0.002 was used with a momentum of 0.3. After these initial
epochs, the momentum was increased to 0.9 and from that point
on the learning rate was halved after each epoch. The learning
rate used for the top two layers was half that used for the other
layers.

5% of the training utterances in each language were held-
out from training for validation purposes; after each epoch, net-
work performance was evaluated on this set. Training finished
when performance on the validation set ceased to improve.

2.3. Jointly trained model of duration and vocoder param-
eters

Our DNN input features make use of the full state alignments
obtained during forced alignment with monophone HMMs in
that they include the features fraction of frames through the cur-
rent state, and position of state within the phone. At synthesis
time, therefore, state durations must be determined before full-
context annotation can be created. This could be done with an
external model, such as a separate neural network or regression
tree. We decided instead to experiment with the use of a single
model for the prediction of durations and vocoder parameters.

Modifications to model training were very simple: we simply
appended a 5-dimensional vector to each frame of network out-
puts, specifying the durations of the 5 states of the phone to
which that frame belongs. These 5 extra dimensions of the out-
puts were mean and variance normalised in the same way as the
dimensions corresponding to vocoder parameters, and training
proceeded just as if these extra 5 values were vocoder parame-
ters.

Synthesis with a network trained in this way results in a
chicken-and-egg problem – to prepare inputs for the network
we need state durations, but state durations are only given as
outputs of the network. We solve this problem by iteratively
refining our state duration predictions. We start with a simple
model of state durations: the state duration vector of a phone to
be synthesised is predicted as the mean of state duration vectors
of all context-independent phones of that type in the training
corpus. Using these crude duration predictions, network inputs
are prepared and a forward-pass through the network made. All
parts of the network’s predictions are discarded except for state
vector predictions. However, predictions of the state vector of
frames within a given phone are typically inconsistent with one
another; we therefore take the mean of these prediction within
each phone segment and use the mean vector as our final predic-
tion of the state vector, which is used to prepare the final inputs
to the network.

3. Results
The identifier for our system in the published results is H.

3.1. Intelligibility

We first consider the results for intelligibility (making use of
the published statistical analysis of significant differences be-
tween intelligibility of systems at the 1% level with Bonferroni
correction). In four languages (Bengali, Hindi, Malayalam and
Telugu) there was no system significantly more intelligible than
ours. In those 4 languages, there were 4, 2, 3 and 4 systems
whose intelligibility was not significantly different from that
of our system (specifically, Bengali: B, D, F, J; Hindi: D, F;
Malayalam: C, E, J; Telugu: C, E, F, J). Excluding our own sys-
tem and natural speech, 47 language/team combinations were
evaluated for intelligibility (not all possible 48 combinations as
no results were published for team I in Marathi). Of those 47,
22 were not significantly more or less intelligible than ours, 22
were significantly less intelligible, and only 3 combinations (all
from different teams) were significantly more intelligible.

3.2. Naturalness

We now consider mean opinion scores for naturalness from all
listeners on RD sentences; naturalness scores on SUS sentences
are not considered here. In Tamil, our system is outperformed
only by system F. On three of the languages (Bengali, Marathi
and Telugu), our system is outperformed only by two systems.
Overall, our system outperforms between 1 and 4 other systems
in each language.

3.3. Speaker similarity

Turning to speaker similarity, we now consider mean opinion
scores from all listeners on RD sentences; In Tamil and Ben-
gali, our system is outperformed by only one other system. On
two of the languages (Malayalm and Telugu), there are only
two other systems significantly better than ours. In case of SUS

sentences, our system outperforms every other TTS system sig-
nificantly in Telugu. In Tamil, there is no other system which is
significantly better than ours. Overall, there are between 0 to 3
systems significantly better than ours in any language.

4. Conclusion
Our front-end tools have benefitted from only very limited de-
velopment since last year’s Challenge; the only innovation was
the schwa-deletion module, and for the three languages where
this was not used, the tools used were identical. In spite of this,
our system was among the most intelligible in the challenge,
which shows our unsupervised approach is successful in new
languages.

The naturalness and speaker similarity of our system have
not improved relative to competing systems since last year. This
can be attributed to our use of new DNN technology which we
have had little experience of tuning for new data sets rather than
a well-established highly-tuned HMM system, the use of sim-
pler post-processing without full global variance, and the larger
datasets which mean competing concatenative systems can at-
tain better performance.

5. Acknowledgements
This research was supported by EPSRC Programme Grant
EP/I031022/1, Natural Speech Technology (NST).

6. References
[1] T. Raitio, A. Suni, J. Yamagishi, H. Pulakka, J. Nurminen,

M. Vainio, and P. Alku, “HMM-based speech synthesis utilizing
glottal inverse filtering,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 19, no. 1, pp. 153–165, 2011.

[2] O. Watts, A. Stan, Y. Mamiya, A. Suni, J. M. Burgos, and J. M.
Montero, “The Simple4All entry to the Blizzard Challenge 2013,”
in Proc. Blizzard Challenge 2013, August 2013.

[3] A. Suni, T. Raitio, D. Gowda, R. Karhila, M. Gibson, and
O. Watts, “The Simple4All entry to the Blizzard Challenge 2014,”
in Proc. Blizzard Challenge 2014, September 2014.

[4] M. Choudhury, A. Basu, and S. Sarkar, “A diachronic approach
for schwa deletion in Indo-Aryan languages,” in Proceedings of

the 7th Meeting of the ACL Special Interest Group in Computa-
tional Phonology.

[5] M. Bisani and H. Ney, “Joint-sequence models for grapheme-to-
phoneme conversion,” Speech Communication, vol. 50, no. 5, pp.
434 – 451, 2008.

[6] T. Mayer, “Toward a totally unsupervised, language-independent
method for the syllabification of written texts,” in Proceedings
of the 11th Meeting of the ACL Special Interest Group on Com-
putational Morphology and Phonology, ser. SIGMORPHON ’10,
2010.

[7] B. V. Sukhotin, “Optimization algorithms of deciphering as the
elements of a linguistic theory,” in Proceedings of the 12th Con-
ference on Computational Linguistics, ser. COLING ’88, 1988.

[8] O. Watts, “Unsupervised learning for text-to-speech synthesis,”
Ph.D. dissertation, University of Edinburgh, 2012.

[9] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Speech parameter generation algorithms for HMM-based
speech synthesis,” in Acoustics, Speech, and Signal Processing,
2000. ICASSP ’00. Proceedings. 2000 IEEE International Con-
ference on, vol. 3, 2000, pp. 1315–1318 vol.3.

[10] H. Silén, E. Helander, J. Nurminen, and M. Gabbouj, “Ways
to implement global variance in statistical speech synthesis,”
in INTERSPEECH 2012, 13th Annual Conference of the Inter-
national Speech Communication Association, Portland, Oregon,
USA, September 9-13, 2012, 2012, pp. 1436–1439.

[11] A. Suni, D. Aalto, T. Raitio, P. Alku, and M. Vainio, “Wavelets for
intonation modeling in hmm speech synthesis,” in Proc. 8th ISCA
Speech Synthesis Workshop, 2013.

[12] T. Raitio, A. Suni, L. Juvela, M. Vainio, and P. Alku, “Deep neu-
ral network based trainable voice source model for synthesis of
speech with varying vocal effort,” in Proc. of Interspeech, Singa-
pore, September 2014, pp. 1969–1973.

[13] T. Raitio, H. Lu, J. Kane, A. Suni, M. Vainio, S. King, and P. Alku,
“Voice source modelling using deep neural networks for statistical
parametric speech synthesis,” in 22nd European Signal Process-
ing Conference (EUSIPCO), Lisbon, Portugal, September 2014.

[14] Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep neu-
ral networks employing multi-task learning and stacked bottle-
neck features for speech synthesis,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2015.

