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Abstract

This paper describes the use of a low-dimensional vector rep-
resentation of sentence acoustics to control the output of a
feed-forward deep neural network text-to-speech system on a
sentence-by-sentence basis. Vector representations for sen-
tences in the training corpus are learned during network training
along with other parameters of the model. Although the net-
work is trained on a frame-by-frame basis, the standard frame-
level inputs representing linguistic features are supplemented
by features from a projection layer which outputs a learned rep-
resentation of sentence-level acoustic characteristics. The pro-
jection layer contains dedicated parameters for each sentence in
the training data which are optimised jointly with the standard
network weights. Sentence-specific parameters are optimised
on all frames of the relevant sentence — these parameters there-
fore allow the network to account for sentence-level variation
in the data which is not predictable from the standard linguistic
inputs. Results show that the global prosodic characteristics of
synthetic speech can be controlled simply and robustly at run
time by supplementing basic linguistic features with sentence-
level control vectors which are novel but designed to be consis-
tent with those observed in the training corpus.

Index Terms: text-to-speech, speech synthesis, controllable
speech synthesis, audiobooks, deep neural nets, neural net em-
beddings, unsupervised learning

1. Introduction

Conventional data-driven text-to-speech (TTS) generally aims
to achieve adequate neutral prosody. This may be acceptable
for synthesising isolated sentences, but for whole paragraphs
or stories such repetitive neutral prosody — unvarying between
sentences — is fatiguing for listeners and unpleasant to listen to.
There has been much recent interest in training TTS systems
on speech from audiobooks [1, 2]. When an expert voice tal-
ent makes such recordings, they modulate intonation, rhythm
and intensity of their speech from sentence to sentence in order
to convey the coherence of the text and engage listeners’ atten-
tion. With growing interest in training systems on such data —
and synthesising speech in the same domain — it is important
to establish effective techniques for modelling and controlling
prosodic variation above the sentence level.

For HMM-based synthesis, several techniques have been
proposed that can be controlled externally with exogenous vari-
ables, such as cluster-adaptive training (CAT) [3], multiple-
regression hidden semi-Markov models (HSMM) [4] and eigen-
voices [5]. Note that the specific tasks performed by control
vectors differ (approximation of speaker characteristics, speak-
ing style, emotion, etc.) but these models all have in common
the possibility for external control. Speech synthesis with deep
neural networks (DNN) has recently been shown to be competi-
tive in quality with that of HSMM-based systems [6, 7, 8], how-

ever, and so it is desirable to find equivalent techniques for the
exogenous control of DNN-based systems. We here experiment
with a means of ‘steering’ an otherwise conventional DNN TTS
system at the sentence level using exogenous control vectors
(CVs). Unlike the previously cited work on CAT, MRHSMM
and eigenvoices, we train our models from a ‘flat start’ with ran-
domly initialised CVs for the training data. We thus learn in an
unsupervised manner a space of sentences which captures the
dimensions of variation in the training data, and which can then
be used to modulate the characteristics of synthetic speech on a
sentence-by-sentence basis.

We present several systems, each of which is the result of
different training and synthesis time configurations. Analysis
of the systems’ output is presented, along with the results of an
evaluation using randomly sampled CVs, and ‘oracle’ CVs in-
ferred from held-out test audio. The evaluation of randomly-
sampled CVs tests the hypothesis that any reasonable varia-
tion from sentence to sentence is preferable to conventional
monotonous prosody, even if that variation is unconnected to the
text. The evaluation of ‘oracle’ CVs is designed to test whether
optimal low-dimensional CVs are adequate to capture sentence-
level variation in speech.

2. DNN with sentence-level control vectors
2.1. Basic DNN

The bulk of the work of synthesis in all our systems is per-
formed by a conventional DNN TTS model similar to the base-
line system in [8]. This is shown by the unshaded parts of
Figure 1: a feed-forward multilayer perceptron with multiple
hidden layers, whose inputs are numerical representations of
conventional linguistic features coded at frame level. Each hid-
den layer computes a representation of the previous (output or
hidden) layer as a non-linear function of the previous layer’s
representation. The network’s output is computed as a linear
function of the final hidden layer, and is a frame of parameters
which can — directly or in some smoothed form — be used to
drive a vocoder.

2.2. Control vectors

The novel part of the systems is shown by the shaded parts
of Figure 1. This part of the model supplements the standard
frame-level inputs with features from a projection layer which
outputs a learned representation of sentence-level acoustic char-
acteristics of the current sentence. The projection layer’s input
consists of an n-dimensional binary vector, where n is the num-
ber of sentence tokens in the training corpus and where 1 bit of
the vector is turned on to indicate the index of the current sen-
tence token. Its (linear) output is a d-dimensional vector, where
d is the dimensionality of the CV space used by the system. The
projection layer’s parameters are represented as an n X d matrix
P, each of whose rows is dedicated to a sentence of the training
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Figure 1: Architecture of networks trained

data. P is optimised jointly with the weights and biases of the
network’s k hidden layers (W7y...x). Although the network is
trained on a frame-by-frame basis, the sentence-specific param-
eters are constrained to be the same for all frames of the rel-
evant sentence — these parameters therefore allow the network
to account for sentence-level variation in the data which is not
predictable from the standard linguistic inputs. A sentence-level
representation of the training data emerges which minimises the
loss function used to train the network as a whole.

2.3. Synthesis methods

Given a trained model, CVs need to be supplied at run-time.
Various options for obtaining these exist: one possibility is to
use the learned sentence space as an interface for allowing a
human operator to control the system’s output. Full investiga-
tion of this possibility is out of the scope here, but it has en-
couraged our focus on 2-dimensional sentence vectors which
could be controlled manually. Ultimately we are interested in
predicting control vectors from text. Again, however, we leave
such prediction with an external model for future work. Instead,
the main hypothesis that the current work tests is that any rea-
sonable variation from sentence to sentence is preferable to do-
ing the same thing on each sentence as conventional models do,
even if that variation is not conditioned on the text input. One
system therefore randomly samples CVs at synthesis time. Fi-
nally, there are two methods of synthesis which we regard as
baseline and topline: using the mean of the training vectors as
a fixed CV which remains unchanged from one sentence to the
next, and using ‘oracle’ CVs for the test set. These oracle CVs
are inferred by optimisation on the test set speech.

2.4. Previous work

The use of extended backpropagation to learn representations of
network inputs as weights on connections feeding into the input
layer was described in [9]. The use of such projection layers
to represent multiple words or other textual units in a context
in a way that is invariant to their position in that context has
become widespread in language modelling [10, 11] as well as
being applied to other tasks (e.g. letter-to-sound [12]; phrase-
break prediction [13]). The idea is used for acoustic modelling
in [14, 15, 16], where the CVs are speaker codes for rapidly
adapting DNN-based speech recognition system to new speak-
ers. Codes for new speakers are inferred from adaptation data
in a way similar to that in which we obtain our ‘oracle’ CVs.
As mentioned, our method bears some resemblance to CAT
and MRHSMM for HMM-based systems, in that these methods
allow control of a synthesiser by means of an external control

Table 1: Summary of systems built.
Synthesis | CV dimensions:
method 2 5 10

Fixed F | Fs | Fio
Sampled | S | - -
Oracle O | Os5 | Owo

vector. In contrast to [3] and [17], however, we initialise our ut-
terance representations randomly, and learn them in an entirely
unsupervised fashion.

3. Experiments
3.1. Systems built

Table 1 summarises the systems built for the objective and sub-
jective evaluation and informal analysis presented here. The
only hyperparameter varied between systems is the dimension-
ality of the sentence CVs (columns of Table 1). We are par-
ticularly interested in the 2-dimensional case as it of particular
relevance to human-controllable speech synthesis, and the lis-
tening tests evaluate only systems with 2-dimensional vectors.
The rows of Table 1 indicate the different procedures for obtain-
ing CVs at synthesis time, mentioned in Section 2.3, and which
will be explained in detail in Section 3.5. The data used for
training the systems will now be briefly outlined, as well as the
methods used to train and assemble their front- and back-ends.

3.2. Data

The speech database for the pilot task of the 2015 Blizzard
Challenge was used for these experiments [18]. The database
— provided to the Challenge by Usborne Publishing Ltd. — con-
sists of the speech and text of 22 children’s audiobooks spoken
by a British female speaker; the considerable prosodic variation
of the corpus makes it ideal for testing techniques for global
prosody control. The total duration of the audio is approx.
2 hours; for the purposes of this paper, 10% of the data was
set aside as a test set and consists of three whole short stories:
Goldilocks and the Three Bears, The Boy Who Cried Wolf and
The Enormous Turnip, with a total duration of approximately
12 minutes.

The segmentation of the data distributed for the Challenge
does not always divide the text and audio into whole sen-
tences, and the time-aligned transcript has been lowercased and
stripped of all punctuation. The original running text of the
audiobooks with punctuation and case information intact was
included as part of the release, however, and before any voices
were built, a segmentation and transcription of the data respect-
ing sentence boundaries and containing full punctuation were
obtained by merging the running texts and unpunctuated time-
aligned transcripts semi-automatically.

The rechunked data consists of 1995 and 239 sentences for
train and test sets. The underlying sampling rate of the lossy-
coded speech data distributed for the challenge was 44.1 kHz;
it was downsampled to 16kHz for our experiments. Speech pa-
rameters were extracted from the downsampled speech using
the GlottHMM vocoder [19]. Source and filter separation was
achieved using glottal inverse filtering of the speech waveform;
30 line spectral frequency (LSF) coefficients representing vocal
tract shape were extracted, along with several sets of parame-
ters to characterise the estimated glottal source: 10 voice source
LSF coefficients, the harmonic-to-noise ratio (HNR) in five fre-



quency bands, energy, and fundamental frequency (Fp). Veloc-
ity and acceleration coefficients were computed for all afore-
mentioned parameters and appended to the feature vector.

3.3. Front-end

Text-normalisation is performed in our front-end by a rule-
based module which depends on long lists of acronyms, abbre-
viations, etc. Part-of-speech tags are assigned to words with a
maximum entropy tagger [20] released publicly already trained
[21]. Phonetic forms of words are looked up in a British En-
glish received pronunciation lexicon derived from the Combilex
lexicon [22], chosen as a good match for the reader’s accent.
A letter-to-sound predictor based on joint multigrams [23] was
trained on this lexicon to handle out-of-vocabulary words. Pho-
netic features such as place and manner of articulation are ob-
tained for each phone by table lookup.

An HMM-based aligner was trained from a flat start on the
data in order to determine the start and end points of each seg-
ment in the data. The whole state-alignment is retained and
added to the annotation. The model allows silence to be in-
serted between words; a duration threshold (50ms) is used to
flag short silences as spurious, which are then discarded. The
retained silences are treated as phrase-boundaries. The aligner
is retained to be used to force-align the test set for TTS to obtain
natural durations and phrasing. After the positions of silences
have been determined, several post-lexical rules (including e.g.
handling British English linking-r) are applied.

From the corpus annotation described, frame-level linguis-
tic feature files were prepared. These contain c¢.600 values per
frame, and code similar features to those described in [6]. Pho-
netic and part of speech features are encoded as 1-of-k subvec-
tors, and position and size information (including position of
frame in current state and state in current phone) are encoded
with continuous values. The features derived from (oracle) du-
rations described in [6] were not used as these were found to un-
fairly improve performance, due to correlation of variations in
segment duration with e.g. the presence of Fjy excursions. Fea-
tures characterising the sentence by its length were excluded:
the sentence CVs should remove the need for these.

3.4. Acoustic model training

For DNN training, 95% of the frames labelled as silence were
removed. The unvoiced regions of the Fp track were interpo-
lated, and voicing was represented in a separate stream. Lin-
guistic input features were normalised to the range [0.01, 0.99]
and acoustic features standardised.

All systems had 6 hidden layers, each of 1024 units with
tanh hidden unit non-linearities, and a linear activation func-
tion at the output layer. Network parameters (hidden layer
weights/biases, output layer weights/biases, projection layer
weights) were initialised with small non-zero values, and the
network was optimised from this flat start with stochastic gra-
dient descent to minimise the mean squared error between its
predictions and the known acoustic features of the training set.
Lo regularisation was applied to the hidden layer weights with
a penalty factor of 0.00001. Mini-batches consisted of 256
frames. For the first 15 epochs, a fixed learning rate of 0.002
was used with a momentum of 0.3. After 15 epochs, the mo-
mentum was increased to 0.9 and from that point on the learn-
ing rate was halved after each epoch. The learning rate used for
the top two layers was half that used for the other layers.

5% of the training utterances were held-out from training
for validation purposes; after each epoch, sentence CVs for

0.6F T T T T T
Training v Synth:S
X x x x & Synth:F x  Synth: O
0.4 ~ > 5 x.‘& - VW
4k x X%, pey Wy vy 4
x W' x x % h(
X B« X XX X "v'v
x X "' x X x ¥
x %, x x x % "y,
0.2 WX ko e R & v, 1
« N ".' X x x XE % X ppe v‘
X e s XX X x XK x v
x v ARRVENGEERERL .
0.0} o Y s w
. x x xX % ki *
% x o XX x x X . X ¥
x v X X% f X oo X Xx %x v
X W X Xx X 0 X x
LA X' XX Xox ¥ X X W
s X
—0.2} X vy Tx X X 4 i
) x "# ))(( * * %X x)z( * xx x""
™ e
x
—0.4} ) Ry v |
. X X XX
x X
x
L L L x L L L
-0.6 -0.4 -0.2 0.0 0.2 0.4

Figure 2: CVs learned in training and used at synthesis time

these held out frames were updated by doing stochastic gradi-
ent descent in the same way as for the training set, but updating
only the relevant projection layer weights. Then network perfor-
mance was evaluated by passing the development data forwards
through the network and computing the loss function. Training
finished when performance on the validation set stopped im-
proving. Training took 32, 40 and 33 epochs on the systems
employing 2-, 5- and 10-dimensional CVs respectively.

3.5. Speech synthesis

The aligner created during front-end training was used to im-
pose natural state durations, pause positions and phrasing on
the annotation of the test set.

CVs were made in different ways for systems on each row
of Table 1. Training and test set CVs for systems with 2-
dimensional CVs are shown in Figure 2. Systems F, Fs, and
F1o all used the mean vectors of the CVs learned during train-
ing. For system S, CVs were sampled from the sentence space;
it was found that sampling from a normal distribution fitted to
the training CVs gave speech that was not much more varied
than that of system F. To avoid the dominance of typical values
near the mean whilst at the same time avoiding the generation of
extreme outlying values, CVs were uniformly sampled between
3.8 and 4.0 standard deviations from the mean of a diagonal
covariance Gaussian fitted to the CVs learned for training sen-
tences. Finally, oracle CVs for systems O, Os, and O were
inferred from the audio of the test set; stochastic gradient de-
scent was performed on the test set until convergence, updating
only rows of matrix P dedicated exclusively to modelling the
test data — other network parameters were left unchanged.

Figure 2 shows the control vectors learned in training and
used at synthesis time by the systems using 2-dimensional con-
trol vectors (F, S and O). It can be seen that test set CVs for
both the O-systems and system S are more extremely distributed
than we might expect would be appropriate from the distribution
of training CVs. In the case of system S, the sampling distri-
bution was manually set via informal listening, and relatively
extreme values were chosen. This is consistent with previous
experience in controllable speech synthesis: [24] notes that to
properly steer a data-driven articulatory-controllable to produce
modified vowels, tongue movements must be specified of a far
greater magnitude than those observed in the training data.

After CVs were determined for test utterances, labels were
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Figure 3: Variation in synthetic Fy and gain for a single utter-
ance fragment as CVs are manipulated over 10 repetitions

created for the test set. As predictions of the acoustic values for
neighbouring frames are made independently, a parameter gen-
eration algorithm developed for HMM-based speech synthesis
[25] is used with pre-computed variances from the training data
to obtain smooth and speech-like vocoder parameter trajecto-
ries from the de-standardised DNN output features. The result-
ing trajectories for the LSF stream were enhanced by imposing
the global variance of the training data using the simple z-score
transform approach suggested by [26]. A modified form was
used: best results were obtained by interpolating global vari-
ance and synthesised sentence variance with even weights.

3.6. Objective evaluation and analysis

Objective evaluations indicates that higher CV dimensionality
improves prediction performance, as does using oracle CVs.
Full details are omitted for reasons of space.

To get an informal impression of the meaning of the dimen-
sions of the sentence space, we synthesised 100 repetitions of
a few sentences whilst manually manipulating the values of the
2-dimensional CV. We chose 100 points evenly spread across
the rectangle delimited by the minimum and maximum values
along each axis of training set CVs.! The main dimension of
variation is from the bottom left of Figure 2 to top right. Figure
3 shows synthetic Fp and gain for a 10 repetitions of a single ut-
terance fragment (‘Who's been sitting in my chair?’), with CVs
spaced evenly along this diagonal, starting at approximately co-
ordinates (-0.4, -0.4) in Figure 2 and ending at approximately
(0.5, 0.4). Absolute mean Fp and gain both increase as we
move the CV along this diagonal; however, the changes are
much more complex and subtle than a global shift in values.
Note how the Fy contour on the word been (around 0.5 sec-
onds) has an inflection which is inverted from the lower to the
higher samples; in some places variation in Fp increases more
than in others. The sentence space allows us to alter global char-
acteristics whilst respecting correlations between parameters.

3.7. Subjective evaluation

The 240 sentences from the 3 stories of the test set synthe-
sised as described in Section 3.5 were concatenated back into
70 chunks of audio corresponding to book pages for the evalu-
ation [27]. This is because the listening test is designed to test

I These samples can be heard at ht tp: //homepages.inf.ed.
ac.uk/owatts/papers/IS2015_sentence_control/

Table 2: Subjective results.
Listt. S>F | Listt O>F
ID (%) 1D (%)

4714 | 11 40.00
3571 | 12 61.43
47.14 | 13 55.71
37.14 | 14 54.29
42.86 | 15 54.29
47.14 | 16 50.00
5143 | 17 51.43
50.00 | 18 50.00
48.57 | 19 50.00
0 5143 | 20 52.86
All 45.86 | All 52.00

— O 0 NN LW~

the effect on listeners of between-sentence variation. Each page
on average contains 3.4 sentences and lasts 10.3 seconds.

Two tests were conducted: one comparing systems F and S,
and the other comparing F and O. For each test, 10 paid native
speakers of English were asked to listen to 70 pairs of stimuli
and asked to say which they preferred. Specifically, they were
asked to ‘choose the version which you would prefer to hear if
you were listening to stories like this for fun’. In each of the 70
pairs, the same page text was synthesised by the two different
systems under evaluation. The ordering of the pairs was fixed
to the page-order for the original stories, but the order of sys-
tems within each pair was balanced and randomised separately
per listener. The listening test was conducted in purpose-built
listening booths using high-quality headphones. Different lis-
teners were employed for each evaluation.

Results are shown in Table 2. Results for pooled listeners
(bottom row) force us to reject our hypothesis that random vari-
ation between sentences is better than fixed prosody (at least in
the form that we realised the variation): there is a preference for
system F over S which a binomial test indicates is significantly
different from chance (o = 0.05).

Results of the test comparing O and F show no significant
difference when listeners’ results are pooled. However, there is
only a single listener (11) who prefers O’s samples less than half
the time; all others either prefer the oracle system O (listeners
12-15) or have no preference (16-20).

4. Conclusions

We have shown how the global prosodic characteristics of syn-
thetic speech can be controlled simply and robustly at run time
by supplementing basic linguistic features with sentence-level
control vectors. Our results indicate that listeners have mixed
reactions to prosodically more varied speech even when con-
trolled by oracle CVs, which in itself is a motivation for making
TTS more controllable. The hypothesis that ‘any variation is
better than no variation’ was rejected: care needs to be taken
that the variation is appropriate for the text being synthesised,
which provides motivation for our ongoing work on learning to
predict control vectors from text.
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