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Abstract
In this work we present our entry for the Voice Conversion
Challenge 2016, denoting new features to previous work on
GMM-based voice conversion. We incorporate frequency warp-
ing and pitch transposition strategies to perform a normalisation
of the spectral conditions, with benefits confirmed by objec-
tive and perceptual means. Moreover, the results of the chal-
lenge showed our entry among the highest performing systems
in terms of perceived naturalness while maintaining the target
similarity performance of GMM-based conversion.
Index Terms: voice conversion, speech synthesis, statistical
spectral transformation, spectral envelope modeling.

1. Introduction
One of the fields of speech synthesis that has received signif-
icant attention in the last decade is the one intending to con-
vert the identity of a speaker to another specific target, known
as Voice Conversion (VC). Following a number of pioneer-
ing works ([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]),
the work of [12] proposing a statistical conversion of spec-
tral features derived from parallel corpora of source and tar-
get speakers became a reference for a number of further stud-
ies. Among them we highlight prominent contributions such as
joint acoustic modeling ([13]), maximum-likelihood and eigen-
voices based strategies ([14], [15]), non-parallel data process-
ing ([16]), incorporating frequency warping ([17], [18]), and
works as [19] and [20] considering novel conversion frame-
works based on deep learning and non-negative matrix factor-
ization respectively, among others.

In previous work we applied accurate spectral envelope es-
timation to VC with clear benefits on the perceived quality and
naturalness of converted speech. More precisely, the technique
True-Envelope (TE) ([21], [22]) was used to derive all-pole sys-
tems as spectral features of higher accuracy in terms of envelope
fitting compared to linear prediction (LPC) or other cepstrum-
based techniques ([23]). As a result, the quality of speech and
singing-voice converted by following the joint Gaussian Mix-
ture Model (GMM) based approach ([13]) outperformed ([24],
[25]). Later, we proposed in [26] an optimised spectral transfor-
mation that compensates for limitations of such a probabilistic
model to efficiently represent the features space, resulting in a
perceived reduction of degradations on the converted speech.

Although a mapping of the main spectral features can be
achieved by GMM-based VC, a robust gender conversion ef-
fect it is not always observed. This suggests some limita-
tions to robustly reproduce a warping-like transformation on
the source speech spectra at inter-gender conversions following

well-known differences (in average) of the vocal-tract length
conditions. Inspired by works such as [17] and [18] we pro-
pose applying a warping factor to perceptually assure a gender
conversion effect. Additionally, we study the benefits of apply-
ing downwards pitch transposition to female speech to reduce
over-estimations of the envelope amplitude on the TE algorithm
due to particular spectral conditions at low-frequencies on high-
pitched speech, as explained in following sections.

We report in this paper the application of these techniques
as gender-dependent pre-processing to normalise the spectral
conditions between speakers before GMM-based conversion.
By following this strategy we obtained a reduction of the spec-
tral conversion error and improvements on both perceived target
similarity and naturalness according to a perceptual evaluation.
Moreover, the results obtained at the Voice Conversion Chal-
lenge 2016 (VCC2016) with the resulting conversion method-
ology were among the highest performing systems in terms of
naturalness (ranked second overall) while maintaining a target
performance comparable to GMM-based conversion.

A summary of previous work and the proposed spectral nor-
malisation in which is based our conversion system for the VCC
2016 are described in Section 2. In Section 3 we report the re-
sults of objective and subjective evaluations. The results ob-
tained at the challenge are presented and discussed in Section 4.
The paper finishes with conclusions at Section 5.

2. Our methodology: Improved Spectral
Processing applied to GMM-VC

2.1. GMM-based differential spectral transformation

Our conversion framework is based on the well-known joint
source-target acoustic modeling approach, denoting a mapping
of spectral features on a frame-by-frame basis derived by lin-
ear regression [13]. As proposed in [25] and [27], we apply
this transformation by means of a transformation filter Hk(ω)
corresponding to the differences between input and predicted
spectral envelopes:

Hk(ω) = |Ŷk(ω)| − |Xk(ω)|, (1)

where Xk(ω) and Ŷk(ω) denote the spectral envelopes accord-
ing to the input (source) feature xk and the corresponding tar-
get prediction ŷk for frame number k. Note that Hk(ω) is ap-
plied pitch-synchronous following a Wide-Band Harmonic Si-
nusoidal Modeling (WBHSM) approach in which a phase cor-
rection model is considered for spectral amplitude modification
(see [28] for further details).
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2.2. Accurate spectral envelope extraction

Spectral features based on linear prediction (LP) or cepstral co-
efficients do not generally lead to accurate spectral envelope in-
formation ([29]). We exploit the benefits of TE estimation ([30],
[21]) which provides efficient envelope fitting and allows an op-
timisation of the estimation based on the F0 information [31],
resulting, according to previous work, in clear benefits in terms
of converted speech quality ([24], [32], [25]).

Thus, we perform optimal TE estimation that is mel-scaled
before deriving an all-pole model represented as Line Spec-
tral Frequencies (LSF) (our final features). We denote this
model mel-based True Envelope All-Pole (mel-TEAP). Given
a sample-rate of 16 kHz we found in forty a good compromise
as order to closely fit the spectra of male and female speech.

2.3. New feature: spectral conditions normalisation

2.3.1. Reducing over-estimations on high-pitched speech

True Envelope estimation performs an iterative smoothing of
a cepstrum-based envelope to achieve a smooth interpolation of
the spectral peaks. Considering the harmonic partials as support
points, the case of high pitched spectra represent an augmented
challenge to this technique since larger amplitude fluctuations
may be observed in spectra with a smaller number of harmon-
ics. As a consequence, some over-estimation issues were found
at the frequency interval denoted by [0, F0] by the interpolation
done by True Envelope ([22]) on spectra showing large ampli-
tude fluctuations among the first harmonics. Although these
conditions may not appear systematically nor affect the conver-
sion performance substantially, we propose to reduce the risk of
potential issues by applying one-octave downwards pitch trans-
position to female speech to artificially create an intermediate
support point (harmonic partial) at the mentioned interval.

2.3.2. Global gender normalisation by frequency-warping

For inter-gender conversion, VC frameworks based on a statis-
tical mapping of spectral features do not always show a nat-
ural transformation of the target speaker gender, suggesting
some limitations to producing a spectral warping adjustment
that corresponds to a vocal-tract length normalisation. Accord-
ingly, motivated by works as [17] and [18] we apply a gender-
dependent warping factor to the source speech to increase the
spectral alignment with the target speaker.

The warping break-point function correspond to
[0 0; Fin Fout; Fs Fs], with values Fin = 5kHz,
Fout = 6kHz (Fs = samplerate) to convert male to female
speech and conversely, Fin = 6kHz, Fout = 5kHz for the
opposite conversion. These values were defined subjectively
by experimentation on voices from different corpora and that
although this is not an optimal solution as in the aforementioned
works, a global factor strategy requires less computational
cost and was found sufficient to produce a perceived gender
transformation already on the source speech before conversion.

We remark that both warping and transposition strategies
are applied as a pre-processing step according to the conversion
case: female to female (labels including ’SF-TF’, transposition
on both speakers); female to male (’SF-TM’, transposition for
female, warping for male); male to female (’SM-TF’, warping
for male, transposition for female). There is no modification for
the male to male (SM-TM) since it already represents the most
convenient spectral estimation and matching conditions. Note
that the number included in the conversion pairs labels showed
in the plots represents the speaker identifier.
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Figure 1: Spectral conversion error for intra-gender conver-
sion. Top: male to male. Bottom: female to female with (black-
dashed) and without (blue) applying pitch transposition.
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Figure 2: Spectral conversion error for inter-gender conversion
with the original (blue), proposed (red-dotted) and intermediate
pre-processing configurations. Top: male to female, bottom:
female to male.

2.4. Statistical modeling error compensation

There exists a modeling error due to limitations of a probabilis-
tic mixture with finite number of components to accurately rep-
resent the input features space denoted by xk. In a GMM-based
transformation, this averaging of the information results typi-
cally in target features predictions representing over-smoothed
spectra. In [26] we proposed to compensate this effect by firstly
defining a new transformation filter Hmk(ω) in terms of the
envelope X ′

k(ω) of the actual feature x′
k seen by the mixture:

Hmk(ω) = |Ŷk(ω)| − |X ′
k(ω)|, (2)

representing the new predicted envelope Y mk(ω) = Xk(ω) +
Hmk(ω). Secondly, potential over-emphasized spectral fea-
tures in Y mk(ω) are compensated by applying average ampli-
tude differences between Y mk(ω) and Ŷk(ω). This strategy
proved effective to enhance the converted speech with a per-
ceived reduction of degradations (see [26] for further details).
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Figure 3: Target similarity (top) and MOS (bottom) results for
six conversion pairs. The three colons per pair corresponding
from left to right to our previous conversion method, the pro-
posed pre-processing one, and the original source speech.

3. Evaluation of the pre-processing
configurations

3.1. Speech corpora and training conditions

The data used for the VCC2016 was selected from the DAPS
database [33] and down-sampled to 16kHz. It contains five
source and five different target speakers, resulting in twenty five
conversion pairs, all of them requested by the task of the chal-
lenge (see [34] for further information of the VCC2016 task) .
The source speakers included three female and two male speak-
ers and conversely for the target ones. The training set consisted
of 162 utterances, and 54 additional ones were provided as eval-
uation set. The mel-TEAP envelope features were extracted
from the speech signals also pitch-synchronously, resulting in
training sizes within the range [̃20, 000, 32, 000] overall. For
learning conditions verification, we evaluated the conversion
performance using mixtures with 2, 4, 8, 12, and 16 components
and found that 12 was the most convenient value in average.
The results presented in the following section were therefore
obtained using this GMM size with full-covariance matrices.

3.2. Spectral conversion evaluation

As performance measure we computed the average spectral
distortion between the mel-scaled spectra given by the target
and converted LSFs on a 10-fold cross validation fashion on
all the conversion pairs. We evaluated the spectral conversion
rates over different pre-processing configurations (the no pre-
processing case was labeled as ”ORIGINAL”). The transfor-
mation compensation described in section 2.4 was not applied
in order to exclusively evaluate the performance of the features
mapping for the different spectral conditions on the waveforms.

The results are presented in Fig.1 and Fig.2 for inter and
intra gender conversions respectively. For reference, we show
in Fig.1 (top) the results for SM-TM conversion although there
is no pre-processing considered for this case. Note the reduc-
tion of the spectral distortion for the SF-TF conversion (bottom)
to a level comparable to the SM-TM conversion when applying
the proposed transposition. Similarly, for the SM-TF conver-
sion (Fig.2, top) it can be seen that both pre-processing steps

resulted in a reduction of the spectral error. Finally, note that
for the female to male conversion (Fig.2, bottom) the warping
step only resulted in improved performance in some pairs only
after transposing the female speech. The low performance of
the warping in this case can be attributed to a lack of optimisa-
tion of the warping function and should be investigated deeper.

3.3. Similarity and naturalness evaluation

We firstly evaluated the perceptual impact of the proposed spec-
tral normalisation in terms of target speaker similarity and
naturalness on listening tests over 20 listeners. The partici-
pants were native english speakers and used high-quality head-
phones. For simplicity only the three gender combinations in-
volving pre-processing configurations (SF-TF, SM-TF, and SF-
TM) were considered. Ten samples of two pairs of each type of
these combinations were evaluated, resulting in a total of sixty
samples in three different versions: the original recordings of
the source speaker and the converted versions with and with-
out pre-processing (both conversions obtained by the compen-
sated transformation previously described, for perceptual eval-
uation purposes). The different versions were evaluated simul-
taneously to judge their similarity by comparison with a sample
(different utterance) of the target speaker according to four dif-
ferent scores including a certainty level: same-absolutely sure,
same-not sure, different-not sure, different-absolutely sure.

The results of the similarity test are shown in Fig. 3
(top). Note that although the performance appears to be highly
speakers-pair dependant it shows better scores for the cases in-
volving gender conversion (that we attribute principally to the
effect of the frequency warping). For the female to female con-
version, the lower conversion error measured objectively does
not show a a significant perceptual effect, suggesting somehow
a compensation in the spectral mapping process of the observed
amplitude over-estimations.

The naturalness test results (Fig.3, bottom) obtained in
terms of Mean Opinion Scores (MOS) also show a speakers de-
pendency again and center the benefits of the proposed spectral
normalisation on the gender conversions. Note the higher scores
compared to the methodology based on previous work (that is
reported already as providing quality improvements [26]). Both
similarity and naturalness tests were carried out using an inter-
face inspired in MUSHRA tests ([35]) that allows listeners to
replay any sample as much as they feel comfortable with their
response and to score using a continuous scale with the pro-
posed answers proportionally distributed for each type of test.

4. Results at the Voice Conversion
Challenge 2016

We show in Fig. 4 and Fig. 5 the results of the similarity and nat-
uralness tests respectively carried out at the VCC2016 where
capital letters represent the entries of the 17 participants (our
system using the proposed pre-processing configurations is la-
beled ’K’, a GMM baseline system as ’Bsl’, and the original
source and target speakers as ’Src’ and ’Tar’ respectively). A
detailed report of the results can be found in [36] with an ex-
tensive analysis of the results. Note that at difference of the
tests reported in the previous section the samples were eval-
uated individually at the challenge (one to one matching for
similarity comparison and individual naturalness scoring). This
may explain some of the higher scores of our system in the
challenge since it appears easier to penalise slight differences
or degradations by simultaneously comparing transformed and
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Figure 4: Target similarity results of the VCC2016 (our system:
K). All conversion pairs included.
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Figure 5: Naturalness results of the VCC2016 (our system: K).
All conversion pairs included.

non-transformed samples from fixed conversion pairs.
Looking at the percentage of samples judged as absolutely

similar to the target (response ”same-absolutely sure”) shown
in Fig. 4 our system shows similar performance to the base-
line GMM-based one. While our features conversion process
is based on the same framework we expected a slightly higher
performance following the incorporation of frequency warping.
We assume the highest conversion scores represent systems ex-
ploiting recent techniques such as those based on deep learning.

In Fig. 6 we show a comparison per-gender combination
case that includes only the baseline, our system, and the best
score per case. The scores confirm a comparable performance to
that of the baseline system but lower than the most competitive
ones. An optimisation of the warping function according to the
conversion pair may help to reduce this performance gap. Note
however, that the best scores (around 40%) do not yet appear
fully satisfactory in terms of robust target similarity.

Concerning the naturalness test (MOS) our scores are
among the most competitive ones. Fig. 5 shows that our sys-
tem ranked in second place and very close to the best system
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Figure 6: Target similarity (top) and MOS (bottom) results av-
eraged per gender conversion case. The three colons from left
to right correspond to the baseline, our system, and best score.

overall (’N’). Note however that this system performs signifi-
cantly low in terms of target similarity, which suggests a low
degree of transformation applied to the waveforms. According
to our scores our systems clearly outperforms the majority of
entries, denoting the benefits of our methodology as a whole.

Looking at each gender conversion case (Fig. 6) our system
performs significantly better than the baseline and very close to
the best scores, being the best for male to female conversion
(best spectral processing conditions). These findings can be ex-
tended and verified in [36].

The results obtained in the VCC2016 allow us to claim ben-
efits overall of applying warping for spectral alignment and ef-
ficient spectral envelope processing to reduce the risk of sig-
nificant degradations on the converted speech due to poor esti-
mated spectral features. Note that this concept refer exclusively
to the features extraction task; and therefore, it can be applied
on frameworks based on models others than GMM.

5. Conclusions
In this paper, we presented the system that was the basis of
our entry for the Voice Conversion Challenge 2016. We in-
corporated pre-processing configurations to previous work in
GMM-based conversion in order to normalise the spectral con-
ditions between speakers. We applied global frequency warp-
ing to align the spectral features for gender conversion and pitch
transposition on female voices to reduce over-estimations on the
spectral envelope information observed on high-pitched speech.
This methodology resulted in higher similarity and naturalness
rates following objective and subjective evaluations.

At the listening tests conducted for the Voice Conversion
Challenge 2016 our system was among the most competitive in
terms of naturalness (ranked second overall) while maintaining
GMM-based conversion performance, demonstrating the bene-
fits of our methodology to improve converted speech quality.

As future work we will study outperforming features con-
version strategies (e.g. deep learning), optimised frequency
warping strategies (e.g. [37], and to clarify the benefits of trans-
posing female speech on the envelope extraction by exhaustive
evaluation on female voices.
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