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Abstract
A problem when developing and tuning speech synthesis sys-
tems is that there is no well-established method of automatically
rating the quality of the synthetic speech. This research attempts
to obtain a new automated measure which is trained on the re-
sult of large-scale subjective evaluations employing many hu-
man listeners, i.e., the Blizzard Challenge. To exploit the data,
we experiment with linear regression, feed-forward and convo-
lutional neural network models, and combinations of them to
regress from synthetic speech to the perceptual scores obtained
from listeners. The biggest improvements were seen when com-
bining stimulus- and system-level predictions.
Index Terms: speech synthesis, naturalness, neural network,
Blizzard Challenge

1. Introduction
There is still no well-established objective measure to automat-
ically quantify the naturalness of the synthetic speech gener-
ated by text-to-speech (TTS) systems. This contrasts with other
areas of speech technology research, e.g., automatic speech
recognition (ASR), where word error rate is the standard per-
formance measure, and speaker recognition, where equal error
rate is commonly used to judge overall system accuracy. Au-
tomatically computed measures of the naturalness of synthetic
speech have, of course, been proposed: mel-cepstral distance
(MCD) [1] and root mean squared error (RMSE) of funda-
mental frequency (F0) are widely used in the speech synthe-
sis community. However, such measures often do not correlate
well with human perception. This means that engineers must
conduct expensive and time-consuming subjective evaluations,
where dozens of human participants provide numeric ratings of
synthetic speech. Intensive tuning of TTS system parameters is
therefore difficult. Furthermore, standard techniques for system
training offer no guarantees that synthetic speech is natural in
terms of human perception, since TTS systems are usually op-
timized using maximum likelihood or minimum error criteria,
rather than a criterion which is perceptually defined.

To overcome these problems, researchers have introduced
measures proposed in telecommunications research [2, 3, 4, 5]
and proposed new objective measures [6, 7] as alternatives to
conventional TTS performance measures. Despite these efforts,
most researchers still use the conventional measures to evalu-
ate synthetic speech, resulting in poor correlation with human
perception. Rather than manually crafting perceptual measures,
an alternative approach is to use machine learning to general-

ize from a database of listener judgements. The Blizzard Chal-
lenge (BC) [8] data is suitable for this purpose. In the Chal-
lenge, participants must build a synthetic voice from the re-
leased speech database and synthesize a given set of test sen-
tences. The sentences from each synthesizer are then evaluated
through large-scale listening tests. Data from six years of the
challenge [9, 10, 11, 12, 13, 14] – including the synthetic speech
output of many synthesizers, natural speech, and listener re-
sponses – have been made publicly available by the organizers.
Some researchers have already tried to predict speech-quality
using acoustic features extracted from BC data [3, 15, 16, 17].
We also follow this approach, but rather than incorporating a
large number of hand-engineered acoustic features into predic-
tors, we instead propose extracting relevant features automati-
cally as part of model training. This is expected to overcome
some of the limitations of conventional measures:

1) Frame-wise nature: Global patterns such as the F0 contour
over the course of a syllable are ignored in spite of their
importance to naturalness.

2) Local vs. global degradation: While conventional mea-
sures can capture global degradation by computing aver-
ages over all frames, it is difficult to handle local problems,
e.g., spectral discontinuities at phone boundaries and a sud-
den, inappropriate F0 excursion on a certain word, which
often dominate subjective naturalness perception [18].

Our predictors automatically learn features at various lev-
els using convolutional neural networks (CNNs) to effectively
overcome the above-mentioned problems. CNNs have the ca-
pacity to capture both local and global degradations through
their convolutional-pooling layers that operate at different lev-
els of detail. In addition, NNs are used for regression in-
stead of the linear regression techniques typically used in pre-
vious work [15]. Furthermore, we combine several speech-
quality predictors by integrating stimulus- and system-level pre-
dictions. Although the two predictions are performed indepen-
dently in previous work [15], we stack them to make use of
system-level knowledge for stimulus-level prediction, and to
train both predictors simultaneously.

NNs have been used previously for automatic evaluation of
low bit-rate audio coding schemes [19] and CNNs have been
found to be effective for the automatic assessment of the per-
ceived quality of digital videos [20]. As far as we know, how-
ever, this is the first attempt to use NNs for predicting the natu-
ralness of synthetic speech.

The remainder of the paper is organized as follows: In Sec-
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tion 2, the dataset used for our experiments is described, and
the predictability of its ratings is investigated. Sections 3 and 4
report on experiments using NNs and CNNs, respectively. Con-
clusions and future work are presented in Section 5.

2. Data used and its predictability
2.1. Data

The BC annually conducts large-scale perceptual experiments
where several hundred stimuli, generated by multiple synthe-
sizers, are rated from 1 (bad) to 5 (excellent) by more than 200
human listeners. For all experiments reported in this paper, we
used the BC data from six years [9, 10, 11, 12, 13, 14]. One En-
glish task with all the domains (except reportorial and paragraph
domains) for each year was used; details are given in Table 1.
This paper takes mean opinion score (MOS) for naturalness as
the subjective measure of interest, although the methods devised
are expected to be applicable to other subjective scores.

2.2. Inherent predictability of the data

An important concern when working with speech natural-
ness prediction is whether subjective scores are inherently pre-
dictable or not. To verify that listener ratings of synthetic speech
are indeed predictable, a bootstrap method [21, 22] was applied
to the database: By random sampling with replacement from
the experimental data and measuring how the resampled MOSs
vary, we can estimate how much the subjective scores would
change if we were to call in an equally-large set of similar but
independent listeners. The following procedure was used:

1. Compute the set of observed MOSs, M , from the origi-
nal subjective evaluation data.

2. b← 1, where b is a replication index.
3. Randomly draw N listeners with replacement from the
N original listeners in the subjective evaluation.

4. Using the scores of the drawn set of listeners, compute
the set of MOSs in bootstrap replication b: M (b) =

[M
(b)
1 , . . . ,M

(b)
S ], where S is the number of stimuli and

M
(b)
s is the MOS of a stimulus s in replication b.

5. Compute the correlation coefficient ρ(b) and other simi-
larity measures between M and M (b)

6. b← b+ 1.
7. If b ≤ B then go to step 3.
8. Compute basic statistics of the set {ρ(b)} and other sim-

ilarity measures across all b.
Here, B = 1000 and the MOS of natural speech was excluded.
BC listening tests follow a balanced design in which listeners
are assigned to groups, and each listener group hears the same
exact set of audio stimuli. The number of listeners from each
group in each bootstrap replication bwas the same as in the orig-
inal data. For each replication, four similarity measures were
computed with reference to the original data: mean absolute
error (MAE), RMSE, Pearson’s correlation coefficient (ρ), and
Spearman’s rank correlation coefficient (ρs). For each measure,
four basic statistics – mean, standard deviation (SD), minimum,
and maximum – were computed over the B replications and
averaged across all years.

Table 2 shows the results of the bootstrap experiment. The
MAE and the RMSE were around 0.2 and the correlations were
adequately high (ρ, ρs > 0.9). This indicates good agreement
among listeners. Thus, MOS for naturalness is predictable, at
least in the BC data used in this paper.

We also used the data replications to investigate the sen-
sitivity of speech naturalness prediction to variation in the re-
sponse data used for training. To this end, we replicated the
training of a predictor from previous work [15], which uses
principal component regression to regress from a set of fea-
tures used in the P.563 measure [2] to a MOS for naturalness.
For each of the B bootstrap replications, two predictors were
trained, on the bootstrap replication and on the original subjec-
tive test data. The differences and the correlation coefficients
between MOSs predicted by the two systems were calculated
in the same manner as in the previous experiment. The differ-
ences and the correlation coefficients were nearly 0.0 and 1.0,
respectively. Predictors derived from subjective tests seem to be
insensitive to variation among listeners in the training data.

3. Speech naturalness prediction using NNs
The dataset available from past BCs is much larger than that
obtained from a typical subjective experimental setup, where,
e.g., 50 stimuli might be evaluated by as few as 10 listeners.
We expect NNs to be able to outperform conventional linear
regression methods where such large-scale data is available.

3.1. Prediction framework

There are two types of scores which have been predicted for
synthetic speech in previous work [15]:

• System-level score: Overall performance of a synthesizer,
averaged over all listeners and stimuli for a system.

• Stimulus-level score: Overall quality of an utterance or
several utterances, averaged over all listeners from whom
responses are available for these utterances.

We devised a framework for speech naturalness prediction to
improve the prediction of both these measures. Figure 1 illus-
trates a standard prediction system, such as the one used in [15].
In this framework, a stimulus-level feature is extracted from
speech, and a stimulus-level score obtained by feeding these
features into a predictor. A system-level score is then obtained

Table 1: Summary of the BC data used.
BC 2008 BC 2009 BC 2010

Task full EH1 EH1

Domain news news news
novel conversational novel

# Systems 20 17 17
# Stimuli 840 663 612

BC 2011 BC 2012 BC 2013
Task EH1 EH2.1 EH1

Domain news news news
novel novel novel

# Systems 12 10 9
# Stimuli 312 420 477

Table 2: Differences and correlation coefficients between MOSs
derived from bootstrap replications and the original subjective
evaluation result.

Mean SD Min Max
MAE 0.18 0.01 0.14 0.23

RMSE 0.24 0.02 0.19 0.31
ρ 0.96 0.01 0.93 0.98
ρs 0.96 0.01 0.93 0.97
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Figure 1: Standard prediction system: a predicted system-level
score is computed by averaging predicted stimulus-level scores.
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Figure 2: Hierarchical prediction system: the predicted system-
level score is used as a feature for stimulus-level prediction.

by averaging all the predicted stimulus-level scores. How-
ever, previous papers [15, 17] have reported large prediction er-
rors for stimulus-level predictions, but shown that system-level
scores can be reasonably predicted with low RMSE and high
correlation with listeners’ ratings. Drawing inspiration from
this, we here propose an alternative approach, using the archi-
tecture shown in Figure 2. The basic idea is to predict the dif-
ference between stimulus- and system-level scores rather than
predicting directly at the stimulus level, thus leveraging the ro-
bustness of the system-level predictions.

3.2. Features and systems evaluated

Referring to previous works [15, 16], stimulus-level acoustic
features were built from 40 P.563 internal features [2], 13 mel-
frequency cepstral coefficients (MFCCs) including the 0th coef-
ficient, and logarithmicF0 (logF0) with first and second deriva-
tives. 12 modified group delay cepstral features (MGD) [23]
with parameters α = 0.6 and γ = 1.3 were also included,
since these proved successful at detecting synthetic speech in
[24]. The signals were downsampled to 8 kHz for P.563 and to
16 kHz for MFCC and logF0 parameter extraction. MFCCs,
logF0, and MGD were extracted every 10 ms and their means
and standard deviations were used in the stimulus-level feature
vector, bringing its total dimensionality to 96. The system-level
feature vector was composed of the mean, median, and max-
imum of the stimulus-level acoustic features, plus two binary
features: whether the speaker was male or female, and whether
the synthesizer was based on waveform concatenation or not.

Each BC uses a different corpus. To reduce the impact of
acoustic differences between corpora, per-year mean normal-
ization and per-system variance normalization were applied for
system- and stimulus-level prediction, respectively. This nor-
malization scheme improved performance the most.

Two basic regression techniques were evaluated using
leave-one-year-out cross-validation:

LR: Elastic net linear regression [25] where the hyperparam-
eter αwas 0.005 and the regularization weights were de-
termined by 5-fold cross-validation.

NN: A feed-forward neural network. For system- and
stimulus-level prediction, one hidden layer having 64
units and two hidden layers having 16 units were used
for the structure, respectively.

Several variants of hierarchical prediction {LR, NN}+{LR,
NN}, where the former and the latter denote system- and
stimulus-level prediction, respectively, were evaluated along
with a simple baseline LR shown in Figure 1. In NN+NN,
both predictors were optimized simultaneously through back-
propagation. NN+LR was excluded due to the small amount of
training data: the total number of TTS systems was only 85.

3.3. Experimental results
Table 3 shows the RMSE and ρs between observed and pre-
dicted MOS. LR+LR significantly outperformed LR in both
prediction tasks. This indicates that system-level scores can
be appropriately predicted from system-level feature vectors,
rather than by averaging predicted stimulus-level scores. More-
over, the hierarchical structure appears to improve stimulus-
level prediction because of correlation between the two lev-
els. Comparing LR+LR and LR+NN, there was almost no
difference in accuracy, possibly because the mean and the SD
of frame-level acoustic features cannot capture local degrada-
tions. NN+NN obtained the lowest system-level RMSE, indi-
cating that NNs may be helpful in predicting overall synthesizer
performance. Simultaneous optimization might compensate for
the lack of training material.

4. Speech naturalness prediction by CNNs
To capture both local and global degradations, it appears essen-
tial to consider the feature sequence itself rather than summary
statistics, as discussed in Section 3.3. Whereas standard feed-
forward NNs cannot handle variable-length inputs in a position-
invariant way, CNNs were developed to solve exactly this prob-
lem. A CNN is composed of multiple feature-extraction stages.
Each stage consists of a convolutional layer, followed by a non-
linear transformation and a pooling (subsampling) layer. Due
to their hierarchical structure, CNNs may automatically cap-
ture degradations at different levels in a variable-length input
sequence. Multiple different pooling operations at each stage
may help detect different kinds of degradation.

Figure 3 illustrates the structure of a CNN as considered
in the experiments, but with one convolutional-pooling layer.
A number of feature maps are extracted from the input feature
sequence through convolution filters. In the last pooling layer,
complete time-invariance is introduced by performing a global
pooling operation across time. The pooled features are ap-
pended to standard stimulus-level features as in Section 3.2 and
then fed into the regression layer for predicting the stimulus-
level score.

Table 3: RMSE and Spearman’s rank correlation coefficient be-
tween held-out listener MOS and predicted MOS.

Level Measure LR LR+LR LR+NN NN+NN

System RMSE 0.52 0.43 0.43 0.33
ρs 0.55 0.74 0.74 0.72

Stimulus RMSE 0.78 0.68 0.68 0.68
ρs 0.40 0.56 0.57 0.57
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(a) LR+LR (b) LR+CNN

Figure 4: Scatter plots of observed and predicted MOS on BC 2012 data, with letters denoting different TTS systems: in the left and right
plots, the overall stimulus-level ρs are 0.73 and 0.79 while the average within-system stimulus-level ρs are 0.04 and 0.18, respectively.

4.1. Experimental setup

CNN-based approaches were evaluated similarly to the experi-
ment in Section 3.2. Specifically, a 10-second long mean- and
variance-normalized MFCC sequence was provided as input to
the following network:

CNN: A two-layer convolutional neural network. 1st convo-
lution with 4 filters of size 13 × 15; 1st max-pooling
over 2 time units; 2nd convolution with 26 filters of size
1 × 15; 2nd max-pooling over all time units. To fo-
cus on the effects of convolution and pooling, no fully-
connected hidden layers were used, so that utterance-
level features including P.563 internal features were fed
directly to the output layer.

4.2. Experimental results

The experimental results are shown in Table 4. Overall,
stimulus-level CNN performance was similar to LR. While the
training error was found to decrease substantially compared to
LR, the test-set error did not improve, despite using normal-
ization and regularization techniques such as dropout [26]. It

Convolution

Time

Dimension

Global pooling
P.563, LF0, MGD

MFCC

Regression

System-level
score

Stimulus-level score

Figure 3: CNN for stimulus-level speech-quality prediction.

may be that acoustic variation due to different linguistic con-
texts, speaker characteristics, speaking-style, TTS systems, etc.,
makes it difficult to construct a feature extractor that works well
on arbitrary input sequences, at least from the relatively limited
data available here. Providing additional side information, e.g.,
time-aligned phone identity and degradation annotation, might
go some way towards alleviating this issue.

On the other hand, the final row of Table 4 also shows that
CNNs improved the correlation between predicted and observed
stimulus MOS within each system. This indicates that CNNs
had some success in identifying local signal features affecting
human perceptual response. Figure 4 presents scatter plots of
BC 2012 predictions, from which it can be seen that within-
system correlations are higher for LR+CNN than for LR+LR.

5. Conclusions
This paper investigated hierarchical and convolutional neural
network approaches for speech-quality prediction, specifically
naturalness. Despite the limited amounts of training data, neu-
ral networks improved several aspects of the predictions. Future
work is to augment synthetic-speech acoustic features with lin-
guistic information, and to investigate the utility of objective
naturalness predictions for improving TTS systems.
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Table 4: Stimulus-level RMSE and Spearman’s rank correlation
coefficient between observed and predicted MOS.

Level Measure LR+LR LR+CNN

Stimulus RMSE 0.68 0.69
ρs 0.56 0.58

Stimulus (within-system) ρs 0.11 0.17
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