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Abstract
A top-down hierarchical system based on deep neural networks
is investigated for the modeling of prosody in speech synthesis.
Suprasegmental features are processed separately from segmen-
tal features and a compact distributed representation of high-
level units is learned at syllable-level. The suprasegmental rep-
resentation is then integrated into a frame-level network. Ob-
jective measures show that balancing segmental and supraseg-
mental features can be useful for the frame-level network. Addi-
tional features incorporated into the hierarchical system are then
tested. At the syllable-level, a bag-of-phones representation is
proposed and, at the word-level, embeddings learned from text
sources are used. It is shown that the hierarchical system is
able to leverage new features at higher-levels more efficiently
than a system which exploits them directly at the frame-level.
A perceptual evaluation of the proposed systems is conducted
and followed by a discussion of the results.
Index Terms: speech synthesis, prosody, deep neural networks,
suprasegmental representations

1. Introduction
Statistical parametric speech synthesis (SPSS) has seen im-
provements over recent years, especially in terms of intelligibil-
ity [1]. Synthetic speech is often clear and understandable, but
it can also be bland and monotonous. Therefore, proper model-
ing and generation of natural speech prosody is still considered
to be a largely unsolved problem [2]. This is relevant especially
in the context of expressive audiobook or conversational speech
synthesis, where speech is expected to be fluid and captivating.

A clear understanding of prosody is essential for achiev-
ing good prediction at synthesis time. In general, prosody can
be seen as a layer that lies on top of the segmental sequence.
Listeners can perceive the same melody or rhythm in differ-
ent utterances, and the same segmental sequence can be uttered
with a different prosodic layer to convey a different message.
For this reason, prosody is commonly accepted to be inherently
suprasegmental [2, 3, 4]. It is governed by longer units within
the utterance (for example, at syllable, word, or phrase levels),
and beyond the utterance, at discourse-level [3].

However, common techniques for the modeling of speech
prosody – and speech in general – operate mainly on very
short intervals, either at the state or frame level, in both hidden
Markov model (HMM) [5] and deep neural network (DNN) [6]
based speech synthesis. Although speech parameter generation
algorithms ensure smooth speech-like trajectories, each predic-
tion prior to this is performed independently for each short-term
unit without access to the longer-term acoustic context.

In an attempt to leverage the suprasegmental properties of

prosody for speech synthesis, earlier work has focused either on
modeling, or on the input and output features used. In terms
of modeling, multi-level approaches have been proposed for
HMM-based systems [7, 8]. In the case of DNN-based sys-
tems, recurrent [9], hierarchical [10], or mixed [11] approaches
have claimed to capture the long-term dependencies of speech.
Recent work has also directed its attention to the output fea-
tures, proposing acoustic representations that are able to capture
longer-term information using various wavelet-based decompo-
sition strategies on the f0 signal [12, 13].

On the input side, it has been shown that prosodic con-
texts are very poorly understood. Recent work revealed that, in
HMM-based synthesis, features above the syllable-level do not
improve the naturalness of synthetic speech [14]. In an effort to
acquire a better understanding of linguistic contexts, continu-
ous representations of input features have been explored, either
at segmental [15, 16] or word-levels [17, 18], with various de-
grees of success. In fact, it was observed that systems focusing
on the linguistic features have been shown to be less effective
in terms of improvements of synthetic speech [1].

This investigation adds to the work exploring input features
for prosody modeling in text-to-speech synthesis, specifically
focusing on continuous representations of suprasegmental con-
texts. Two main contributions are made: (1) a top-down hi-
erarchical model that can leverage suprasegmental information
and represent it compactly at syllable-level; (2) an investiga-
tion of this architecture with a bag-of-phones representation at
syllable-level and word embeddings learned from a large text
database with the skip-gram model [19, 20].

Section 2 introduces the basic and proposed DNN systems,
while section 3 describes the expressive databased used. In sec-
tion 4, we investigate the size of the embedding layer and in
section 5 the new suprasegmental features. In section 6, we
conduct a subjective evaluation of the systems. We conclude
with a discussion of the results.

2. DNN-based speech synthesis
2.1. Basic DNN

The basic deep neural network is a simple feedforward multi-
layer perceptron. We use a configuration similar to the baseline
system described in [16]. A network with 6 hidden layers is
used, each layer consisting of 1024 nodes. We set tanh as the
activation function in the hidden layers and we use a linear out-
put layer. During training, we use a mini-batch size of 256 and
we set the maximum number of iterations to 25.

As output features, we use log-f0, 60-dimensional mel cep-
stral coefficients (MCCs), and 25 band aperiodicties (BAPs) at 5
ms intervals, with their respective delta and delta-deltas. Log-f0
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Figure 1: Top-down hierarchical deep neural network.

is linearly interpolated and a binary voiced/unvoiced decision is
added to the acoustic feature vector. The complete acoustic fea-
ture vector consists of 259 dimensions, which are normalized to
zero mean and unit variance.

For these experiments, we use natural duration, which is in-
ferred from the force-alignment given by a pre-trained 5-state
left-to-right HMM. As input features, we use the same set of
592 binary questions defined at phone, syllable, and word lev-
els used in [16] plus 2 features defined at state and frame-level.
These features are normalized to the range [0.01, 0.99] and, for
the basic DNN, segmental and suprasegmental features are con-
catenated and used as input to the network.

2.2. Hierarchical DNN

Figure 1 illustrates the top-down hierarchical deep neural net-
work. A subset of the above-mentioned 592 binary features
which are defined at syllable and word-level (and are here
termed suprasegmental features) are separated from segmental
(phone-level) features. An initial network inputs these features
and maps them to acoustic parameters defined at syllable-level.
For the current experiments, the acoustic features predicted for
each syllable consist of a 259-dimensional vector obtained by
averaging the frame-level features over the entire syllable.

The network is set to be a 6 hidden layer triangular network.
The lower layers begin with 1024 nodes and this is halved in
the next layer such that the top hidden layer reaches the desired
dimensionality. Further intuition is detailed in section 4. The
syllable network uses the tanh activation function in the hidden
layers and a linear output layer. Mini-batch size is set to 16 and
the maximum number of iterations is set to 25.

After the suprasegmental network is trained, the hidden rep-
resentation of the bottleneck layer is concatenated with the seg-
mental feature vector. The frame-level network is then trained
as described in the previous section.

3. Database
We use expressive audiobook data to conduct these experi-
ments. This type of data is desirable for this type of analy-
sis as the narrator typically records entire chapters sequentially.
Higher-level prosodic effects are thus captured in the recorded
speech, which allow us to explore suprasegmental effects within
the sentence and in the overall discourse. For this work, we have
focused on the freely available audiobook A Tramp Abroad,
available from Librivox1. The data has been pre-processed ac-
cording to [21] and [22]. The hand-selected narrated speech de-
scribed in [22] was used, thus setting aside noisy direct speech

1https://librivox.org
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Figure 2: Objective measures as a function of bottleneck size.
’bline’ represents the baseline system, while ’dn’ indicates a
bottleneck layer of dimensionality n.

data. A training, development, and test set of 4500, 300, and
100 utterances, respectively, was set for the experiments de-
scribed in this work. A further heldout set of 50 utterances was
used for the subjective evaluation described in section 6.

4. Embedding size
In this set of experiments, we observe the effect of bottleneck
layer size on objective measures. The main motivation for
these experiments, and for the proposed framework, is the hy-
pothesis that repeatedly adding high-dimensional features to a
frame-level network might reduce the impact of suprasegmen-
tal effects. The frame-level network might depend too much
on short-term variations and ignore the larger high-dimensional
features. We hypothesize that a good balance between segmen-
tal and suprasegmental features will return the best results.

We use the framework illustrated in Figure 1, where we re-
place the suprasegmental features with the learned hidden repre-
sentations. All experiments use the syllable mean for the acous-
tic features and the top layer as bottleneck layer. Bottleneck size
is varied in powers of 2, from 32 to 512. All syllable-level sys-
tems are triangular networks with 6 hidden layers. The lower
layer has 1024 nodes and we either maintain that size or we re-
duce it in half until we reach the desired dimensionality in the
top hidden layer. As an example, the triangular network for a
bottleneck layer of size 256 has the following structure, in terms
of layer size: (1024, 1024, 1024, 1024, 512, 256).

Figure 2 shows layer size effect on mel-cepstral distortion
(MCD), log-f0 RMSE and correlation. All systems using hidden
representations outperform the baseline, with the best results
occurring with a dimensionality of 256. These results appear to
support our hypothesis, as the segmental features use a vector
of 350 dimensions. A vector of 256 dimensions for supraseg-
mental features balances the two types of features and allows
the best prediction for all acoustic parameters.

5. Syllable and word-level features
5.1. Syllable bag-of-phones

In this and the following section, we investigate the addition
of new features to the frame-level and hierarchical networks.
The hypothesis is that the hierarchical network will be able to
leverage the information given by the new features, while the
frame-level network will depend mostly on segmental features
and ignore the new high-dimensional representations.

We therefore propose a bag-of-phones representation for
syllables, which is essentially an n-hot encoding. We use 3
bags of phones, each defined for the onset, nucleus, and coda,
and containing phone identity and articulatory features. Tak-
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Figure 3: Objective measures for the four systems testing the
proposed bag-of-phones representation.

ing the onset as an example, we define a binary vector where
each component indicates either an articulatory features or a
phone identity. For all phones belonging to the onset of the cur-
rent syllable, we activate the respective articulatory and identity
component in the onset vector. This approach allows us to de-
fine a fixed-size representation of syllables that accounts for the
variable number of phones in the onset and coda, while still in-
cluding all of their defining features. We compare four systems:

frame frame-level deep neural network with all available fea-
tures

frame-BoP baseline DNN with all features plus bag-of-phones
representation for onset, nucleus, and coda of current
syllable.

syl suprasegmental features are trained separately at syllable-
level using a hidden layer with 256 nodes. Input features
to syllable DNN consist of the suprasegmental features
used with the baseline system. That is, this system does
not use the bag-of-phones for onset, nucleus, and coda.

syl-BoP similar to syl-noBoP, except we include the bag-of-
phones features in the input to the syllable-level DNN.

Figure 3 plots the results for mel-cepstral distortion, band
aperiodicity distortion, f0 RMSE and correlation. Results indi-
cate that adding the bag-of-phones representation to the frame-
level DNN does not affect the results. This follows our initial
hypothesis that simply appending more suprasegmental features
to a frame-level DNN might limit the impact of those features.

The difference between frame and syl shows the changes
we get by training supra-segmental representations separately.
This causes the biggest improvements among the four systems.
The difference between syl and syl-BoP measures the changes
caused by the bag-of-phones features when training supraseg-
mental features separately. In the case of RMSE, we do not see
many improvements, but we do notice better results in terms
of correlation and MCD. It’s quite interesting to observe that,
in the BAP case, adding bag-of-phones features to the baseline
slightly decreases performance, while adding the same features
to a syllable-level DNN slightly increases it. This set of exper-
iments shows that not only is the separate training of supraseg-
mental feature predictors useful, but it creates a framework that
is able to leverage additional features in a more robust manner.

5.2. Word embeddings
We extend the previous investigation to incorporate word-level
features. For this task, we use word embeddings learned by
a skip-gram model [19, 20] To learn these embeddings, we
have used the freely available English Wikipedia data dump
from September 2015.2 This data has been pre-processed and

2http://dumps.wikimedia.org/enwiki/20150901

System MCD BAP F0-RMSE F0-CORR
frame 4.596 2.197 28.054 .449

frame-w100 4.598 2.204 28.048 .448
syl-BoP 4.557 2.176 27.095 .477

syl-BoP-w100 4.55 2.177 27.086 .463
syl-BoP-w300 4.565 2.178 26.850 .479

Table 1: Objective results for word embedding systems.

cleaned and we have kept the first 500 million words. Two
models were trained on this dataset, one using an embedding
size of 100 and another an embedding size of 300. The systems
use the publicly available word2vec implementation of the skip-
gram model with negative sampling and they were trained for
15 epochs with a window of 5 words.

We consider five systems, whose identifiers are given in Ta-
ble 1. The frame system is the basic frame-level DNN using
no additional features. frame-w100 uses 100-dimensional word
embeddings and appends them to the input of the basic DNN.
The remaining systems use the framework illustrated in figure 1,
including the bag-of-phones representation described in the pre-
vious section. The first model (syl-BoP) is trained without word
embeddings, and the final two with 100 and 300-dimensional
embeddings (syl-BoP-w100 and syl-BoP-w300).

Table 1 summarizes the results for each system. Adding
word embeddings to the frame-level DNN does not show any
improvements over the baseline. This is surprising, as we would
expect some improvements, given the work described in [18].
However, the authors in [18] used a carefully annotated non-
expressive database for their experiments. They have also used
a bi-directional LSTM, while we have used a feedforward DNN.
We do not observe any relevant differences in terms of objec-
tive measures for the hierarchical systems. However, adding a
larger word feature vector allows the system to slightly improve
f0 prediction. This is interesting, as it suggests that higher-
dimensional features may be useful to learn more complex re-
lationships between suprasegmental units. In that case, the pro-
posed hierarchical system might be useful in processing them.

6. Subjective evaluation
A listening test was conducted on selected systems described
in previous sections. System syl pre-processes suprasegmental
features separately with bags-of-phones and uses a bottleneck
layer with 256 nodes. System syl-w300 is similar to syl, but it
adds 300-dimensional word embedding representations to the
input of the syllable-level network. The baseline system pro-
cesses suprasegmental features directly. From a held-out set, 50
test utterances were synthesized from the parameters predicted
by the frame-level network. 16 native speakers judged random-
ized utterance pairs for the two conditions in a preference test.
Each pair was judged 8 times and each condition received a total
of 400 judgements. Results are shown in Table 2. Percentages
indicate the overall preference for a hierarchical system over
the baseline. Aggregated results for all listeners do not show a
preference for either system which is significant with α = 0.05
under a binomial test with an expected 50% split.

This is surprising, as listening to the synthesized waveforms
informally showed clear differences between systems. Individ-
ual participant results indicate that some listeners prefer the hi-
erarchical systems (2, 6, 10, 14) and others prefer the baseline
system (7, 11), while some participants do not have a clear pref-
erence (1, 12).
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ID syl syl-w300
1 48.15% 43.18%
2 60.87% 51.79%
3 59.26% 59.09%
4 56.52% 48.21%
5 53.70% 54.55%
6 63.04% 46.43%
7 38.89% 56.00%
8 56.52% 53.57%
9 44.44% 50.00%
10 65.38% 51.72%
11 42.59% 43.18%
12 52.17% 48.21%
13 55.56% 63.64%
14 65.22% 42.86%
15 46.30% 47.73%
16 45.65% 42.86%
all 53.39% 50.19%

Table 2: Subjective results. Figure 4: 2-dimensional vizualization of suprasegmental embeddings at
syllable-level using t-SNE [23].

7. Discussion
The results observed in the listening tests were surprising. Ob-
jective measurements for the two proposed systems showed sta-
tistically significant improvements over the baseline. Clear dif-
ferences were also perceived when listening to the synthesized
speech samples informally.3 The subjective evaluation, how-
ever, showed no overall significant preference, although some
participants clearly prefer the proposed method.

In order to understand what listeners are responding to
when submitting their judgements, we compare their prefer-
ences and the differences between the two systems in terms of
objective measures. We compare the baseline and syl systems.
Correlating objective measures with perceptual scores, we ob-
serve that there is no significant correlation in terms of mel-
cepstral distortion (r=-0.0075, n=50, ns) and band-aperiodicity
distortion (r=-0.174, n=50, ns). However, we do observe a sig-
nificant correlation in terms of f0 rmse (r=-0.355, n=50, p<.01)
and f0 correlation (r=0.323, n=50, p<.05). These results show
that listeners are judging the utterances in terms of the f0 sig-
nal. This is reassuring, as when learning representations of
suprasegmental context, we are essentially focusing on a better
understanding of prosody. The proposed systems, therefore, do
modify the f0 signal in a way that affects listeners’ preferences.

For a better insight into how the syllable-level DNN ma-
nipulates the suprasegmental features, we vizualize the hidden
representations learned by the network. For this task, we use
t-SNE [23], an efficient technique for dimensionality reduction.
We randomly sample 1500 syllable embeddings from the syl
system. These are then reduced with t-SNE to a two dimen-
sions. The results are plotted in Figure 4. In the figure, two sec-
tions are enlarged for clarity. Colors are assigned according to
syllable nucleus. We observe that some syllables, which could
potentially be different, are closer in the embedding space. This
is the case, for example, for T r i and T r u. The onset of the
syllable seems to be the main similarity between the two sam-
ples. On the left-hand section, it appears to be the nucleus and
coda the main point of similarity for I N and n I N.

The syllable-level network can be thought of as a feature ex-

3Speech samples can be found in: http://homepages.inf.
ed.ac.uk/s1250520/samples/interspeech16.html

tractor for suprasegmental features. Appending new representa-
tions of context to a frame-level feature vector could introduce
more noise than useful information. This could be the reason
why we failed to observe improvements when adding word em-
beddings to the frame-level network. But pre-processing such
features separately, we can learn useful and compact representa-
tions of suprasegmental context for frame-level prediction. The
syl system achieves good accuracy when computing objective
measures on the syllable-level parameters (MCD: 4.699, BAP:
1.252, F0-RMSE: 26.717). Although we failed to observe an
overall significant preference for the proposed systems, the hi-
erarchical systems are still capable of learning meaningful em-
beddings of suprasegmental features.

In [10], parallel and cascaded networks are proposed to
model f0 components separately. The top-down hierarchical
system described in figure 1 can be thought of as a cascaded
network. Future work could explore a parallel integration of
segmental and suprasegmental features, rather than a cascaded
integration. Similarly, extending this investigation to recurrent
systems might be useful.

8. Conclusions
We have investigated a hierarchical top-down system for DNN-
based speech synthesis. We observed the best results when us-
ing a good balance between segmental and suprasegmental fea-
tures. A bag-of-phones representation for syllables was pro-
posed, which was tested with word embeddings as additional
features in the hierarchical model. When evaluating the hier-
archical systems, participants mostly reacted to the f0 signal,
which suggests that we learn representations that could help us
predict and control prosodic variations.
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