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Abstract
The quality of text-to-speech (TTS) voices built from noisy
speech is compromised. Enhancing the speech data before
training has been shown to improve quality but voices built with
clean speech are still preferred. In this paper we investigate two
different approaches for speech enhancement to train TTS sys-
tems. In both approaches we train a recursive neural network
(RNN) to map acoustic features extracted from noisy speech to
features describing clean speech. The enhanced data is then
used to train the TTS acoustic model. In one approach we
use the features conventionally employed to train TTS acous-
tic models, i.e Mel cepstral (MCEP) coefficients, aperiodicity
values and fundamental frequency (F0). In the other approach,
following conventional speech enhancement methods, we train
an RNN using only the MCEP coefficients extracted from the
magnitude spectrum. The enhanced MCEP features and the
phase extracted from noisy speech are combined to reconstruct
the waveform which is then used to extract acoustic features
to train the TTS system. We show that the second approach
results in larger MCEP distortion but smaller F0 errors. Sub-
jective evaluation shows that synthetic voices trained with data
enhanced with this method were rated higher and with similar
to scores to voices trained with clean speech.
Index Terms: speech enhancement, speech synthesis, RNN

1. Introduction
Statistical parametric speech synthesis (SPSS) systems [1] can
produce voices of reasonable quality from small amounts of
speech data. Although adaptation techniques have been shown
to improve robustness to recording conditions [2] most studies
on SPSS are based on carefully recorded databases. The use of
less than ideal speech material is, however, of a great interest.
The possibility of using found data to increase the amount of
training material is quite attractive, particularly with the wealth
of freely available speech data and increased processing power.
In terms of applications, the creation of personalised voices [3]
often relies on recordings that are not of studio quality. Quality
of synthesised speech can be improved by discarding data that
is considered to be too distorted but when data quantity is small
or noise levels are too high discarding seems like a bad strategy.
Alternatively speech enhancement can be used to pre-enhance
the data.

Statistical model-based speech enhancement methods have
been shown to generate higher quality speech in subjective eval-
uations over Wiener, spectral subtractive and subspace algo-
rithms [4]. Recently there has been a strong interest towards
methods using a deep neural network (DNN) [5, 6, 7, 8, 9] to

generate enhanced acoustic parameters from acoustic parame-
ters extracted from noisy speech. In [5] a deep feed-forward
neural network was used to generate a frequency-domain bi-
nary mask using a cost function in the waveform domain. A
more extensive work on speech enhancement using DNNs is
presented in [6] where authors use more than 100 noise types
to train a feed-forward network using noise-aware training and
global variance [10]. Authors in [7] use text-derived features as
an additional input of a feed-forward network that generates en-
hanced spectrum parameters and found that distortion is smaller
when using text. In most of these studies around eleven frames
(which represent a segment of at least 220ms) are used as in-
put to the network in order to provide the temporal evolution
of the features. Alternatively authors in [8, 9] use a recursive
neural network (RNN) for speech enhancement. It is difficult
to compare results across studies as often authors evaluate their
systems using different objective measures and no subjective
evaluation. It seems however that neural network based meth-
ods outperform other statistical model-based methods and that
the recursive structure is beneficial.

There have not been many studies on using speech enhance-
ment for text-to-speech. In conventional SPSS, acoustic param-
eters that describe the excitation and the vocal tract are used to
train an acoustic model. Authors in [11] found that excitation
parameters are less prone to degradation by noise than cepstral
coefficients. They found a significant preference for voices built
using clean data for adaptation over voices built with noisy and
speech that has been enhanced using a subspace-based speech
enhancement method. In a work submitted on [12] we pro-
posed the use of an RNN to generate enhanced vocoder param-
eters that are used to train an acoustic model of text-to-speech.
We found that synthetic voices trained with features that have
been enhanced using an RNN were rated of better quality than
voices built with noisy data and data enhanced using a statisti-
cal model-based speech enhancement method. We found that
using text-derived features as additional input of the network
helps but not to a great extent and that fundamental frequency
(F0) errors are still quite large even after enhancement.

Most speech enhancement methods operate either on the
magnitude spectrum or some sort of parametrisation of it, or on
the binary mask domain that is used to generate an estimate of
the clean magnitude spectrum [13]. To reconstruct the wave-
form, phase can be derived from the noisy signal or estimated.
In such methods F0 is not enhanced directly. We argued in [12]
that enhancing the acoustic parameters that are used for TTS
acoustic model training would generate better synthetic voices
as it would not require waveform reconstruction. In this pa-
per we investigate this hypothesis in more detail by comparing
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Figure 1: Training a TTS acoustic model using an RNN-based speech enhancement method that enhances vocoded parameters directly
(top) and a parametrisation of the magnitude spectrum (bottom).

two RNN-based methods, one that operates in the TTS-style
vocoder parameter domain as proposed in [12] and another that
enhances a set of parameters that describe the magnitude spec-
trum. To simplify the comparison we do not use text-derived
features in this work.

This paper is organised as follows: in Section 2 we present
a brief summary of RNNs, followed by the proposed speech en-
hancement systems in Section 3 and the experiments in Section
4. Discussions and conclusions follow.

2. Deep recurrent neural networks
RNNs are networks that possess at least one feed-back con-
nection, which could potentially allow them to model sequen-
tial data. Due to the vanishing gradient problem [14] they are
difficult to train. Long short-term memory networks (LSTM)
[15, 16] are recurrent networks composed of units with a partic-
ular structure and as such they do not suffer from the vanishing
gradient and can therefore be easier to train. An LSTM unit is
capable of remembering a value for an arbitrary length of time,
controlling how the input affects it, as well as how that value
is transmitted to the output and when to forget and remem-
ber previous values. LSTMs have been applied in a range of
speech problems [17, 18], including regression problems such
as text-to-speech [19, 20, 21, 22, 23] and as previously men-
tioned speech enhancement [8, 9]. LSTMs could be particu-
larly interesting when training with real noisy data, i.e. record-
ings when speech is produced in noise and therefore changes
accordingly.

3. Speech Enhancement using RNNs
Fig.1 shows the two RNN-based methods that we investigate in
this paper. The diagram on the top represents the enhancement
method proposed in [12]. We refer to this method as RNN-V. In
this method we train an RNN with a parallel database of clean
and noisy acoustic features extracted using the synthesis module
of a vocoder that is typically used for SPSS. The acoustic fea-
tures extracted using this vocoder are the Mel cepstral (MCEP)
coefficients from a smoothed magnitude spectrum, band aperi-
odicity (BAP) values, the voiced/unvoiced (V/UV) decision and
the F0. These acoustic features are extracted at a frame level us-
ing overlapping F0-adaptive windows. Once the RNN is trained
it can be used to generate enhanced acoustic features from noisy

ones, as displayed in the top diagram of Fig.1. These enhanced
features are then used to train the TTS acoustic model.

The bottom of Fig.1 shows the alternative structure we pro-
pose in this paper, which we refer to as RNN-DFT. In this
method we analyse the speech waveform using the short-term
Fourier transform (STFT) to obtain the discrete Fourier trans-
form (DFT) of each time frame. We calculate the magnitude
value of this complex signal, which we refer to simply as the
magnitude spectrum, as well as its phase. To decrease the di-
mensionality of the magnitude spectrum we extract M Mel cep-
stral coefficients from the N length magnitude spectrum, trun-
cating the number of coefficients so that M<N . We refer to
these coefficients as MCEP-DFT coefficients. We train an RNN
with a parallel database of MCEP-DFT coefficients extracted
from clean and noisy speech signals. Once the model is trained
it can be used to generate enhanced MCEP-DFT from noisy
ones. To reconstruct the speech signal these coefficients are
converted to magnitude spectrum via a warped discrete cosine
transform. The enhanced magnitude spectrum and the original
phase obtained from the DFT extracted from the noisy wave-
form, as shown in the bottom of Fig.1, are combined and using
the inverse discrete Fourier transform we obtain the waveform
signal. This signal is once again analysed this time using the
TTS-style vocoder and the extracted features are then used to
train the TTS acoustic model.

4. Experiments
In this section we detail the database used to train and test these
methods and the experiments conducted using vocoded and syn-
thetic speech.

4.1. Database

We selected from the Voice Bank corpus [24] 28 speakers - 14
male and 14 female of the same accent region (England) and
another 56 speakers - 28 male and 28 female - of different ac-
cent regions (Scotland and United States). There are around
400 sentences available from each speaker. All data is sampled
at 48 kHz and orthographic transcription is also available.

To create the noisy database used for training we used ten
different noise types: two artificially generated (speech-shaped
noise and babble) and eight real noise recordings from the De-
mand database [25]. The speech-shaped noise was created by
filtering white noise with a filter whose frequency response



Architecture Training data MCEP (dB) BAP (dB) V/UV (%) F0 (Hz)
NOISY - 9.86 / 10.68 2.62 / 2.41 9.55 / 7.88 40.27 / 4.38
DNN 14 female + 14 male 5.69 / 6.10 1.96 / 1.82 4.00 / 4.25 27.09 / 10.90
RNN 14 female + 14 male 4.63 / 5.06 1.83 / 1.74 2.50 / 2.30 24.52 / 8.34
RNN 14 female 4.70 / 5.89 1.85 / 1.97 2.63 / 5.01 24.08 / 39.68
RNN 14 male 6.18 / 5.23 2.04 / 1.73 5.36 / 2.32 37.87 / 6.45
RNN 28 female + 28 male 4.59 / 5.05 1.86 / 1.72 2.46 / 2.15 24.90 / 8.43

Table 1: Distortion measures calculated from the vocoded parameters of the female / male voice.

matched that of the long term speech level of a male speaker.
The babble noise was generated by adding speech from six
speakers from the Voice Bank corpus that were not used either
for either training or testing. The other eight noises were se-
lected using the first channel of the 48 kHz versions of the noise
recordings of the Demand database. The chosen noises were: a
domestic noise (inside a kitchen), an office noise (in a meeting
room), three public space noises (cafeteria, restaurant, subway
station), two transportation noises (car and metro) and a street
noise (busy traffic intersection). The signal-to-noise (SNR) val-
ues used for training were: 15 dB, 10 dB, 5 dB and 0 dB. We
had therefore 40 different noisy conditions (ten noises x four
SNRs), which meant that per speaker there were around ten dif-
ferent sentences in each condition. The noise was added to the
clean waveforms using the ITU-T P.56 method [26] to calculate
active speech levels using the code provided in [13]. The clean
waveforms were added to noise after they had been normalised
and silence segments longer than 200ms had been trimmed off
from the beginning and end of each sentence.

To create the test set we selected two other speakers from
England of the same corpus, a male and a female, and five other
noises from the Demand database. The chosen noises were:
a domestic noise (living room), an office noise (office space),
one transport (bus) and two street noises (open area cafeteria
and a public square). We used four slightly higher SNR values:
17.5 dB, 12.5 dB, 7.5 dB and 2.5 dB. This created 20 different
noisy conditions (five noises x four SNRs), which meant that
per speaker there were around 20 different sentences in each
condition. The noise was added following the same procedure
described previously. The noisy speech database is permanently
available at: http://dx.doi.org/10.7488/ds/1356

4.2. Acoustic features

Using STRAIGHT [27] we extracted 60 MCEP coefficients, 25
BAP components and using SPTK [28] we extracted F0 and
V/UV information with the RAPT F0 extraction method [29].

MCEP (dB) BAP (dB) V/UV (%) F0 (Hz)
NOISY 9.86 / 10.68 2.62 / 2.41 9.55 / 7.88 40.27 / 4.38
CLEAN* 1.84 / 1.61 1.24 / 1.10 0.58 / 0.62 17.14 / 1.84
NOISY* 9.41 / 10.13 2.75 / 2.50 10.39 / 8.49 41.17 / 4.70
OMLSA 8.19 / 8.36 3.15 / 2.77 8.73 / 8.28 34.03 / 6.31
RNN-V 4.59 / 5.05 1.86 / 1.72 2.46 / 2.15 24.90 / 8.43
RNN-DFT 4.90 / 5.22 2.44 / 2.32 2.06 / 2.44 22.59 / 3.31

Table 2: Distortion measures calculated from the vocoded pa-
rameters of the female / male voice. CLEAN* and NOISY* refer
to distortion calculated using parameters extracted from resyn-
thesised clean and noisy signals.

All these features were extracted using a sliding window of 5ms
shift. The resulting dimensionality of the vocoder features is 87.

Using a hamming window of 16ms and a 4ms shift we
extracted the DFT of 1024 size. From its magnitude value
we extracted 87 Mel cepstral coefficients. This number was
chosen to match the number of parameters extracted using the
STRAIGHT vocoder, making the comparison across methods
fairer.

4.3. Speech enhancement methods

We trained different types of neural networks to map acous-
tic features extracted from noisy natural speech to features ex-
tracted from clean natural speech. The cost function used was
the sum of square errors across all acoustic dimensions. Similar
to [8] we set the learning rate to 2.0 e-5 and used the stochas-
tic gradient descent to train the model with randomly initialised
weights following a Gaussian distribution with zero mean and
0.1 variance. The momentum was set to zero. We used the
CURRENNT tool [30] to train the models using a TESLA K40
GPU board.

As a conventional speech enhancement method we choose
the statistical model-based method described in [31] that uses
the optimally-modified log-spectral amplitude speech estimator
(OMLSA) and an improved version of the minima controlled
recursive averaging noise estimator as proposed in [32]. The
code is available from the authors website and has been used as
a comparison point for other DNN-based speech enhancement
[6, 12].

4.4. Objective measures

In this section we present distortion measures calculated using
the acoustic parameters extracted by the TTS vocoder. The dis-
tortion measures are the MCEP distortion in dB, the BAP distor-
tion in dB, the F0 distortion in Hz calculated over voiced frames
and the VUV distortion calculated over the entire utterance. The
measures are calculated at a frame level across all utterances
of each test speaker (female/male) and averaged across frames.
The distortion is always calculated using vocoded parameters
extracted from clean speech as the reference. In the following
sections we analyse the effect of network architecture, amount
of training data, enhanced features and noisy type using these
distortion measures as evaluation metric.

4.4.1. Network architecture and training data

Table 1 presents the distortion measures of the noisy test
data (NOISY) and five neural network-based enhancement ap-
proaches that differ in terms of network architecture and amount
of training data. All of these networks were trained using acous-
tic features derived from the TTS vocoder, following the RNN-
V method.
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Figure 2: Mel ceptral distortion per noise and SNR condition for female (top) and male (bottom).

DNN refers to a deep neural network made of four feed-
forward layers of 512 logistic units. RNN refers to a network
with two feed-forward layers of 512 logistic units located clos-
est to the input and two bidirectional LSTM (BLSTM) layers of
256 units closest to the output, as proposed in [12].

Most model-based speech enhancement methods train a
model using data from both male and female speakers, but since
the method proposed here is enhancing F0 directly we also
trained two separate models using only data from a single gen-
der for comparison. The data used for training is noted by the
column Training data in Table 1.

We can see from this table that RNN performance is better
than DNN, particularly with respect to V/UV and MCEP distor-
tion. The F0 distortion of the male speaker data seem however
to increase when using data from both genders for training. Re-
sults obtained using models trained with female and male data
separately are only slightly better in terms of F0 distortion but
worst in terms of MCEP distortion, possibly due to the fact that
the mixed gender model uses double the amount of data. Fur-
ther increasing the amount of data from 28 to 56 speakers results
in lower MCEP and V/UV distortion but does not improve BAP
and F0 distortions.

4.4.2. Enhanced features and noise type

In this section we focus on models trained with the most amount
of data, i.e. 56 speakers of mixed gender. Table 2 shows
the distortions of noisy speech (NOISY), resynthesised clean
(CLEAN*) and noisy (NOISY*) speech, and the enhancement
methods OMLSA, RNN-V and RNN-DFT. RNN-V is the same
system listed in the last row of the Table 1.

The resynthesised data refers to the data that has been anal-
ysed and synthesised using the STFT settings described pre-
viously. The distortion observed in CLEAN* results are er-
rors introduced by this process while the distortions observed
in NOISY* are brought up by the resynthesis plus the presence

of additive noise. As we can see in the table, BAP, VUV and
F0 distortion slightly increased when resynthesising the clean
waveform (CLEAN*). Resynthesising noisy speech (NOISY*)
does not seem to increase MCEP distortion (compare NOISY*
and NOISY values) and only marginally increases other types
of distortion. These results seem to indicate that the reconstruc-
tion process does not greatly affect the extraction of TTS acous-
tic features.

Regarding the enhancement methods, Table 2 shows that
OMLSA results in more errors when compared to the RNN-
based methods with respect to all acoustic features. RNN-V
obtained lower MCEP and BAP distortion for both male and
female speech, while RNN-DFT results in lower VU/V and F0

errors. In fact only this method was able to decrease the F0

errors of the male data.
For comparison we calculated the Mel cepstral distortion

of the MCEP-DFT, i.e. the cepstral coefficients calculated from
the magnitude spectrum obtained via STFT analysis. The co-
efficients extracted from clean speech were used as the refer-
ence. MCEP-DFT distortion of the female/male noisy speech
data was found to be of 9.87/10.48 dB. This value is similar to
the one obtained for the MCEP distortion (NOISY row in Ta-
ble 2). MCEP-DFT distortion decreases to 4.9359/5.3829 dB
when MCEP-DFT is enhanced using an RNN. Distortion de-
creased but is still larger than the MCEP distortion of RNN-V
seen in Table 2.

In order to see how the performance of RNN-based meth-
ods depends on the noise type and SNR in Fig.2 we present
the distortion broken down for each noise type and SNR. From
these figures we can see that cafeteria (cafe) and living room
(living) noises are the most challenging ones: MCEP distortion
is quite high even after enhancement. This is most likely due
to the fact that recordings of these noises often contained com-
peting speaker, music and other non-stationary noises. Bus and
office noises, often mostly stationary, seem to distort the signal
less. The gap between the distortion brought by different noise
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Figure 3: Rank results of listening experiment with vocoded (left) and synthetic (right) speech of female (top) and male (bottom).

types is made smaller with enhancement but still remains. The
decrease in distortion after the enhancement seems to be higher
for lower SNRs, in both RNN and RNN-DFT cases.

4.5. Text-to-speech

We built an hidden Markov model (HMM)-based synthetic
voice for the female and the male test data by adapting a previ-
ously trained model of an English female speaker clean data
[33, 34]. MCEP coefficients, BAP and Mel scale F0 statics
and delta and delta-deltas were used to train the model, form-
ing five streams. To generate from these models we used the
maximum likelihood parameter generation algorithm [35] con-
sidering global variance [10].

4.6. Subjective evaluation

We evaluated five different types of vocoded and synthetic
speech: clean speech (CLEAN), noisy speech (NOISY) and
speech enhanced by three methods (OMLSA, RNN-V, RNN-
DFT). Vocoded speech is included in this evaluation to check
whether the quality the synthetic voices is related to the quality
of the enhanced vocoded samples. Notice that the OMLSA and
RNN-DFT methods generate enhanced waveforms while RNN-
DFT generate a sequence of enhanced vocoded parameters. To
create vocoded speech of OMLSA and RNN-DFT we analysed
and resynthesised the waveforms using the TTS vocoder. To
generate vocoded speech of RNN-V we simply synthesised the
enhaced parameters.

4.6.1. Listening experiment design

To evaluate the samples we created a MUSHRA-style [36] lis-
tening test. The test contained 30 screens organised in two
bocks of 15 screens each: the first block with the male voice
and the second with the female voice. The first half of each
block is made of screens with vocoded speech samples while
the second half contain screens of synthetic speech. The first
screen of each block was used to train participants to do the
task and familiarise them with the material. In each screen par-
ticipants were asked to score the overall quality of a sample of
the same sentence from each method on a scale from 0 to 100.
We specifically asked listeners to rate overall quality consider-
ing both speech and background as some of the vocoded sam-
ples contained noise in the background. This is in accordance
with the methodology proposed in [11]. A different sentence
is used across different screens. 42 different sentences for each
speech type (vocoded and synthetic) were used across six listen-
ers. The sentences used for the vocoded speech were a subset of
the ones recorded by the Voice bank corpus while the sentences
used for synthesis were the Harvard sentences [37]. The train-
ing screen was constructed always with the same sentence and it
was made of samples of vocoded speech. Natural clean speech
was also included in the test so that participants would have a
reference for good quality as well as checking if participants
did go through the material and score it as 100 as instructed.
We recruited 24 native English speakers to participate in this
evaluation.



4.6.2. Results

Figure 3 shows the boxplot of listeners responses in terms of the
rank order of systems for the female (top) and the male (bottom)
voice of vocoded (left) and synthetic (right) speech. The rank
order was obtained per screen and per listener according to the
scores given to each voice. The solid and dashed lines show me-
dian and mean values. To test significant differences we used a
Mann-Whitney U test at a p-value of 0.01 with a Homl Bonfer-
roni correction due to the large number of pairs to compare. The
pairs that were not found to be significantly different from each
other are connected with straight horizontal lines that appear on
the top of each boxplot.

As expected natural speech ranked highest and noise ranked
lowest for all cases. RNN-DFT was rated higher among all en-
hancement strategies in all cases. The gap between clean and
RNN-DFT enhanced speech is smaller for the synthetic speech
style than for the vocoded speech. In fact for both genders the
synthetic voice trained with RNN-DFT enhanced speech was
not found to be significantly different than the voice built with
clean speech. The increasing order of preference of the meth-
ods seem to be the same for vocoded and synthetic speech:
OMLSA, followed by RNN-V and RNN-DFT. The benefit of
RNN-based methods is seen in both vocoded and synthetic
voices, while the OMLSA method improvements seems to de-
crease after TTS acoustic model training.

5. Discussion
We have found that the reconstruction process required in the
RNN-DFT method does not seem to negatively impact the ex-
traction of TTS acoustic features from noisy data. However we
observed that the RNN-DFT method increases both MCEP and
BAP distortion more than the RNN-V method. The assumption
that phase can be reconstructed directly from the noisy speech
data may have caused an increase in distortion. RNN-DFT
seems however to decrease V/UV and F0 errors when compared
to RNN-V. This is somewhat unexpected as the RNN-V ap-
proach directly enhances the F0 data. Both methods decreased
MCEP distortion for all noises tested, making the gap between
non-stationary and stationary noises smaller.

We argued in [12] that enhancing the acoustic parameters
that are used for TTS model training should generate higher
quality synthetic voices but subjective scores showed that RNN-
DFT resulted in higher quality vocoded and synthetic speech
for both genders. The RNN-DFT enhanced synthetic voice was
in fact ranked as high as the voice built using clean data. We
believe that RNN-V did not work as well because enhancing
the F0 trajectory directly is quite challenging, as F0 extraction
errors can be substantial in some frames (doubling and halving
errors) while small in others.

6. Conclusion
We presented in this paper two different speech enhancement
methods to improve the quality of TTS voices trained with noisy
speech data. Both methods employ a recursive neural network
to map noisy acoustic features to clean features. In one method
we train an RNN with acoustic features that are used to train
TTS models, including fundamental frequency and Mel cepstral
coefficients. In the other method the RNN is trained with pa-
rameters extracted from the magnitude spectrum, as is usually
done in conventional speech enhancement methods. For wave-
form reconstruction the phase information is directly obtained

from the original noise signal while the magnitude spectrum
is obtained using the output of the RNN. We have found that
although Mel cepstral distortion is higher the second method
was rated of a higher quality for both vocoded and synthetic
speech and for the female and male data. The synthetic voices
trained with data enhanced with this method were rated simi-
lar to voices trained with clean speech. In the future we would
like to investigate whether similar improvements would apply
to voices trained using DNNs and whether training an RNN di-
rectly with the magnitude spectrum could further improve re-
sults.
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ing speech representations using a pitch-adaptive time-frequency
smoothing and an instantaneous-frequency-based F0 extraction:
possible role of a repetitive structure in sounds,” Speech Comm.,
vol. 27, pp. 187–207, 1999.

[28] Speech signal processing toolkit: SPTK 3.4, Nagoya Institute of
Technology, 2010.

[29] D. Talkin, “A robust algorithm for pitch tracking,” Speech Coding
and Synthesis, pp. 495–518, 1995.

[30] F. Weninger, “Introducing CURRENNT: The Munich Open-
Source CUDA RecurREnt Neural Network Toolkit,” J. of Ma-
chine Learning Research, vol. 16, pp. 547–551, 2015.

[31] I. Cohen and B. Berdugo, “Speech enhancement for non-
stationary noise environments,” Signal Processing, vol. 81, no. 11,
pp. 2403 – 2418, 2001.

[32] I. Cohen, “Noise spectrum estimation in adverse environments:
improved minima controlled recursive averaging,” IEEE Trans. on
Speech and Audio Processing, vol. 11, no. 5, pp. 466–475, Sept
2003.

[33] J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Iso-
gai, “Analysis of speaker adaptation algorithms for HMM-based
speech synthesis and a constrained SMAPLR adaptation algo-
rithm,” IEEE Trans. on Audio, Speech and Language Processing,
vol. 17, no. 1, pp. 66 –83, 2009.

[34] R. Dall, C. Veaux, J. Yamagishi, and S. King, “Analysis of speaker
clustering strategies for HMM-based speech synthesis,” in Proc.
Interspeech, Portland, USA, Sep. 2012.

[35] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Speech parameter generation algorithms for HMM-based
speech synthesis,” in Proc. ICASSP, vol. 3. IEEE, 2000, pp.
1315–1318.

[36] Method for the subjective assessment of intermediate quality level
of coding systems, ITU Recommendation ITU-R BS.1534-1, In-
ternational Telecommunication Union Radiocommunication As-
sembly, Geneva, Switzerland, March 2003.

[37] IEEE, “IEEE recommended practice for speech quality measure-
ment,” IEEE Trans. on Audio and Electroacoustics, vol. 17, no. 3,
pp. 225–246, 1969.


