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ABSTRACT
This paper extends learning hidden unit contributions (LHUC) un-
supervised speaker adaptation with speaker adaptive training (SAT).
Contrary to other SAT approaches, the proposed technique does not
require speaker-dependent features, the generation of auxiliary gen-
erative models to estimate or extract speaker-dependent information,
or any changes to the speaker-independent model structure. SAT-
LHUC is directly integrated into the objective and jointly learns
speaker-independent and speaker-dependent representations. We
demonstrate that the SAT-LHUC technique can match feature-space
regression transforms for matched narrow-band data and outperform
it on wide-band data when the runtime distribution differs signifi-
cantly from training one. We have obtained 6.5%, 10% and 18.5%
relative word error rate reductions compared to speaker-independent
models on Switchboard, AMI meetings and TED lectures, respec-
tively. This corresponds to relative gains of 2%, 4% and 6% com-
pared with non-SAT LHUC adaptation. SAT-LHUC was also found
to be complementary to SAT with feature-space maximum likeli-
hood linear regression transforms.

Index Terms— SAT, Deep Neural Networks, LHUC

1. INTRODUCTION

Acoustic model (AM) adaptation aims to normalise the mismatch
between training and runtime data distributions owing to the acous-
tic variability among speakers as well as other distortions introduced
by the channel or acoustic environment. Speaker adaptive train-
ing (SAT) [1, 2], initially proposed for Gaussian mixture models
(GMMs), aims to build a canonical acoustic model that is adjusted to
the particular characteristics of speakers using linear transforms (op-
erating in either model space [3] or feature space [4]) and found by
maximising the likelihood of adaptation data under the model. Those
techniques are often referred to as Maximum Likelihood Linear Re-
gression (MLLR) transforms and the feature-space variant (fMLLR)
has been successfully applied to speaker adaptive training of Deep
Neural Network (DNN) acoustic models [5] often bringing signifi-
cant improvements in accuracy [6, 7, 8, 9].

Here we are primarily concerned with direct speaker adaptive
training of DNN parameters. Contrary to test-only adaptation ap-
proaches [10, 11, 12, 13, 14, 15, 16, 17], SAT may offer a more tun-
able canonical DNN model which is able to perform normalisation
better than test-only adaptation. At the same time, we are inter-
ested in investigating the possibility of SAT training without using
auxiliary features (such as i-vectors [18, 19, 9, 20]), bottleneck fea-
tures [21, 22]) or additional speaker-dependent (SD) parameters that
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are added to the speaker-independent (SI) model and retuned in a
separate SAT phase [23, 24, 25, 26, 27, 20, 28].

This paper builds on the recently introduced DNN model-based
speaker adaptation technique of learning hidden unit contributions
(LHUC) [15, 16]. In LHUC, an amplitude parameter is introduced
for each hidden unit, tied on a per-speaker basis, and estimated in
supervised [15] or unsupervised [16] fashion, the latter using first-
pass alignments. This technique has resulted in significant reduc-
tions in WER, when tested using the TED talks datasets from the
IWSLT evaluation, and was complementary to fMLLR [16]. Here,
we extend this approach to speaker adaptive training (SAT-LHUC)
in which SI and SD LHUC transforms are estimated during training.

2. LHUC AND SPEAKER ADAPTIVE TRAINING

A speaker independent DNN consists of multiple hidden layers, each
implementing some non-linear transformations. Each individual hid-
den unit acts as an adaptive basis function that learns to recognise
certain patterns in the previous layer. The learning process for the
DNN is driven by a single objective, with the hidden units driven
to specialize and become complementary to each other, in order im-
prove the objective. To explain different patterns in the training data
the hidden units learn some joint representation of the problem the
model was tasked to solve. However, when the model is applied
to unseen data, the relative importance of the hidden units may no
longer be optimal. LHUC, given adaptation data, rescales the con-
tributions (amplitudes) of the hidden units in the model without ac-
tually modifying their feature receptors (Fig. 2).

LHUC modifies hl
j , the hidden unit output of unit j in layer l,

using a speaker-dependent amplitude function:

hl
j = ξ(rl,s

j ) ◦ ψ(wl
jx + blj) . (1)

rs
j ∈ R is an adaptable speaker-dependent parameter, re-parametrised

by a function ξ : R→ R+, where s is the speaker. wl
j is the jth col-

umn of the corresponding weight matrix Wl ∈ Rdx×dh , blj denotes
the bias, ψ is the hidden unit activation function, and ◦ denotes a
Hadamard product.

In the original formulation of LHUC, for test-only adaptation,

the speaker-dependent parameters θs
LHUC = {{rl,s

j }
dl
h

j=1}
L
l=1, and

the speaker-independent parameters θSI = {{wl
j , b

l
j}

dl
h

j=1}
L
l=1 were

separately optimised. During training, the hidden units were es-
timated speaker-independently and were re-scaled by ξ(rs), with
the speaker dependent-amplitude parameters θs

LHUC estimated us-
ing adaptation data. In this work, we use speaker-specific informa-
tion to learn hidden unit amplitudes during training. The motivation
for this approach, termed SAT-LHUC, is that it will lead to hidden
units which can learn different behaviours for different speakers, for



Fig. 1. Schematic of SAT-LHUC training.

example learning that a feature is harmful for some speakers but use-
ful for others (look at Fig.3 for an illustration). Likewise, similar
properties (once learned) can be exploited during adaptation to un-
seen speakers resulting in better speaker-adapted models.

To perform SAT training with LHUC, we use the following ob-
jective:

LSAT (θSI , θSD) = −
X
t∈D

logP (ct|xs
t ; θSI ; θ

mt
LHUC) (2)

where s denotes the sth speaker, mt ∈ {0, s} selects the SI or
SD LHUC transforms from θSD ∈ {θ0LHUC , ..., θ

S
LHUC} for each

data-point separately (i.e. at the frame level, cf. Fig. 1) based on a
Bernoulli distribution parametrised by γ hyper-parameter that deter-
mines the overall SI/SD data ratio, as follows:

kt ∼ Bernoulli(γ) (3)

mt =

(
s if kt = 0

0 if kt = 1
(4)

3. EXPERIMENTAL SETUPS

We have evaluated SAT-LHUC using three different corpora: the
TED talks corpus [29] following the IWSLT evaluation protocol
(www.iwslt.org), the Switchboard corpus of conversational
telephone speech [30] (ldc.upenn.edu) and the AMI meetings
corpus [31, 32] (corpus.amiproject.org). Unless explic-
itly stated otherwise, the models share a similar structure across
the tasks – DNNs with 6 hidden layers (2,000 units in each) and a
sigmoid non-linearity. The output logistic regression layer models
the distribution of context-dependent clustered tied states [33]. The
features are presented in 11 (±5) frame long context windows.

For TED we follow the recipe described in [34]. In this work
however, compared to [34, 16], our systems benefit from better lan-
guage models developed for our IWSLT–2014 systems [35]: in par-
ticular, we rescore using a 4-gram language model estimated from
751 million words. The baseline TED AMs are trained on unadapted
PLP features with first and second temporal derivatives. We report
the results on tst2010 and tst2013 sets. The latter is more chal-
lenging due to larger speaker variability as well as the need for auto-
matic segmentation.
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Fig. 2. Example illustration on how LHUC performs adaptation
(best view in color). A “bump” model with two hidden units can
approximate “bump” functions (top). To learn function f2 given
training data f1 (middle), we splice two “bump” functions together
(4 hidden units, one input/output) to learn an approximation of func-
tion f1. Let us assume that we want to adapt to f2 using LHUC
scalers. We plot the model optimised to f1 and adapted to f2 by
adjusting only LHUC parameters (bottom).
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Fig. 3. Example illustration showing how SAT-LHUC can improve
a learned representation. Assume we want to approximate both f1
and f2 with the similarly constrained (4 hidden units) model from
Fig. 2. Again, it is possible with two sets of SAT-LHUC parameters
for f1 and f2.

In case of Switchboard (SWBD) we use the Kaldi GMM
recipe [36, 37], using Switchboard-1 Release 2 (LDC97S62). Our
baseline unadapted acoustic models were trained on either MFCC
or LDA/MLLT features. The results are reported on the full Hub5
00 set (LDC2002S09) to which we will refer as eval2000.

For AMI, we follow the Kaldi GMM recipe described in [38],
which is using the so called AMI Full-ASR split on train, dev and
eval sets. On this corpus we also train a separate set of models us-
ing mel-filter-bank (FBANK) features for which fMLLR transforms
cannot be easily obtained, and as such, LHUC makes an interesting
adaptation alternative.

The SAT related statistics for each of the above corpora are given
in Table 1. Note, in this work we adapt to the headset or the side of
a conversation, rather than the actual speaker: hence the number of
clusters (or estimated transforms) during training can differ from the
number of speakers.

www.iwslt.org
ldc.upenn.edu
corpus.amiproject.org
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Fig. 4. WER(%) as a function of γ in equation (3).

Table 1. Corpus statistics related to SAT and adaptation. In paren-
theses we give the physical number of speakers.

Training Test
Corpora #Clusters Time (h) #Clusters Time (h)
AMI 547 (155) 80 135 (36) 17.5
TED 788 (788) 143 39 (39) 9.0
SWBD 4804 (4000) 283 80 (80) 3.6

4. RESULTS

We first investigated the impact of the SI/SD ratio when training
the DNN weights and the SI and SD LHUC transforms. The SI/SD
ratio depends on γ, the hyper-parameter in eq (3). To speed-up
the experimental turnaround we initially limited our experiments to
the TED corpus with 30 hours training data, using smaller mod-
els (1,000 hidden units per layer). The segments for this limited
condition were sampled in such a way that the number of speak-
ers remained the same between the limited and full variants. Re-
sults of those experiments on tst2013, for different settings of
γ ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 1.0}, can be found in Fig. 4 (a). Note,
when γ = 0 the SI transform would not be estimated; conversely for
γ = 1.0 there would be only a single global SI transform. The latter
case is a variant of parametrised sigmoid activations with a learnable
amplitude during training [39].

The first observation one can draw from Fig. 4 is that the ac-
curacy of the SAT-LHUC model and the SI decodes depends on
the amount of data used to estimate the SI LHUC transforms dur-
ing training – the less SI data that flows through SI LHUC trans-
forms, the worse SI results are, with a dramatic decrease in first-
pass accuracy when less than 30% of data is treated as speaker-
independent (γ < 0.3). Conversely, increasing the SI/SD ratio
to about 50% results in comparable accuracy to the standalone SI-
trained model. This trend holds for other scenarios with more data,
including Full-TED (i.e. 143 hours training data) (Fig. 4 (b)) and
SWBD (Fig. 4 (c)).

The parametrised sigmoid function (for γ = 1.0) is particularly
effective for data-constrained experiments (compare Fig. 4 (a) with
(b) and (c)); for instance, on 30hour-TED the parametrised sigmoid
model results in a WER of 27.5% while the conventional sigmoid
model has a WER of 28.9%. This advantage diminishes for bigger
models and more data.

In the second experiment we investigated how SAT-LHUC af-
fects the accuracy of LHUC adapted systems. To do so we adapted
SAT-LHUC models using the first pass adaptation targets obtained
from the corresponding SAT-LHUC systems operating in SI mode.

Table 2. WER(%) on Ted Lectures. Feature-transform (FT) denotes
fMLLR transforms.

System IWSLT Test set
Training Decoding tst2010 tst2013

Baseline speaker-independent systems
SI SI 15.0 22.1

SAT-LHUC SI 15.2 22.3
Baseline speaker-adapted systems

SAT-FT FT 12.9 20.8
SI LHUC 12.7 19.1

SAT-FT FT-LHUC 11.8 18.5
Proposed speaker-adapted systems
SAT-LHUC+FT FT 12.7 21.0

SAT-LHUC LHUC 12.4 18.0
SAT-LHUC-FT FT-LHUC 11.6 17.6

Here we can see that a speaker-dependent representation provides
a more tunable canonical model. For example, on 30hour-TED
an adapted SAT-LHUC γ = 0.3 system produced 8% relative
lower WERs when compared to an adapted SI system (23.2% vs.
25.1%), regardless of the fact that the SAT-LHUC adaptation align-
ments were 1.4% absolute worse than its SI counterpart (30.3% vs.
28.9%).

Finally, we investigated whether the inferior adaptation results
for γ < 0.3 were caused by differences in learned representations or
by lower quality adaptation targets. We used the adaptation targets of
the ‘Baseline SI’ model (28.9%WER) and adapted SAT-LHUC mod-
els trained with γ ∈ {0.05, 0.1, 0.3} on 30hour-TED. The results
(Fig. 4 (a)) indicate that the reason for lower adaptation accuracies
(compared to γ = 0.5 system) was mostly due to less accurate adap-
tation targets. Adapting the γ = 0.3 model with the ‘Baseline SI’
targets reduces the WERs of γ = 0.3 system to 22.6% (from 23.2%)
– 2.5% absolute lower when compared the baseline SI LHUC system
(25.1%) (both systems used the same adaptation targets) and 0.1%
absolute lower than the best γ = 0.5 system. This further strength-
ens our claim that the SAT-LHUC models indeed learn a better and
more tunable speaker-dependent representation, but its use is some-
how limited by a necessary trade-off of managing a good SI first-pass
model.

Fig. 4 (c) shows similar plot but for Switchboard data (more
detailed discussion below) and one can observe a similar pattern,
with γ = 0.5 being an optimal choice. This, in conjunction with
another validation on AMI data, is a strong indicator that SAT-LHUC
training with roughly half of the data-points being treated as speaker-



Table 3. WER(%) and relative WER change (WERR)(%) on Switchboard Hub00. Feature-transform (FT) denotes fMLLR transforms.
System Hub5’00

Training Decoding Features SWB CHE TOTAL WERR (%) Baseline Sys. ID
Baseline speaker-independent models
A SI SI MFCC 15.8 28.4 22.1
B SI SI LDA/MLLT 15.2 28.2 21.7
Baseline speaker-adapted systems
C SI LHUC MFCC 15.4 27.0 21.2 -4.5 A
D SI LHUC LDA/MLLT 14.7 26.6 20.7 -4.6 B
E SAT-FT FT LDA/MLLT 14.2 26.2 20.2 -7.0 B
F SAT-FT FT+LHUC LDA/MLLT 14.2 25.6 19.9 -1.5 E
SAT Trained
G SAT-LHUC LHUC MFCC 14.8 26.5 20.7 -6.3 / -2.4 A / C
H SAT-LHUC LHUC LDA/MLLT 14.6 25.9 20.3 -6.5 / -1.9 B / D
I SAT-FT-LHUC FT+LHUC LDA/MLLT 14.1 25.6 19.9 -0.0 F

independent makes a good task-independent setting.
SAT-LHUC on TED: Table 2 presents more detailed compar-

isons of SAT-LHUC adaptation trained on 143 hours of TED talks.
Most of our observations are based on tst2013 which is larger
and more challenging than tst2010. However, for the sake of
comparability with our previous work on LHUC [16], we also re-
port the results on tst2010 which is better matched to the training
data. Speaker-independent baselines are listed in the first block of
Table 2 – we can see the SAT-LHUC model in SI decoding mode
falls around 0.2% absolute behind the standalone SI model on both
test sets. Then, the second block presents the adapted baselines in-
cluding speaker adaptive training with fMLLR transforms applied
at both training and decoding stages. Here we can observe 6–14%
relative improvement from fMLLR transforms; surprisingly the im-
provement is smaller for the more mismatched data of tst2013 in
which scenario test-only LHUC performs significantly better – im-
proving accuracy by 15.3% and 13.5% relative for tst2010 and
tst2013, respectively. The two approaches can be further com-
bined resulting in an additional improvement of 5% relative com-
pared to their standalone usage.

The third block of Table 2 presents the WERs of the proposed
SAT-LHUC training scheme (section 2). We observe further gains
for both sets: for instance, on tst2013 SAT-LHUC gives 6% rel-
ative gain when compared to test-only LHUC and 13% gain when
compared to an fMLLR transform. Not surprisingly, joint combina-
tion of SAT LHUC with SAT fMLLR bring further gains of about
2% relative on average.

SAT-LHUC on Switchboard: In contrast to other corpora, we
have observed that test-only LHUC does not match the WERs ob-
tained from SAT fMLLR models. Comparing the WERs of SI sys-
tem B (21.7%) with test-only LHUC system D (20.7%) and the
SAT trained baseline that utilised fMLLR feature-transforms, sys-
tem E (20.2%) (Table 3), it is apparent that the improvement from
test-only LHUC is comparable with other test-only adaptation tech-
niques, e.g. feature-space discriminative linear regression [7], but
neither matches the SAT fMLLR models. This could be due to the
fact Switchboard is narrow-band and thus contains less information
for discrimination between speakers [40], especially when estimat-
ing relevant statistics from small amounts of unsupervised adapta-
tion data. Additionally, the Switchboard part of eval2000 has
a large overlap between training and test speakers – 36 out of 40
test speakers are observed in training [41], which limits the need
for adaptation, but also enables models to learn much more accurate
speaker characteristics during supervised speaker adaptive training.

Table 4. WER(%) on AMI.
Training Decoding Features dev eval

Baseline speaker-independent systems
SI SI FBANK 26.5 29.1

SAT-LHUC SI FBANK 26.3 28.9
Speaker-adapted systems

SI LHUC FBANK 25.6 27.1
SAT-LHUC LHUC FBANK 24.9 26.1

SI FT FMLLR 26.2 27.3
SAT-FT FT+LHUC FMLLR 25.6 26.2

The adaptation results of the SAT-LHUC model are given in Ta-
ble 3 in row H (20.3%) where we almost match the SAT fMLLR
baseline (20.2). We also observe that LHUC performs relatively bet-
ter under more mismatched conditions – here Callhome (CHE) sub-
set of eval2000– similar to what was found on TED. Note, we
train two sets of models, one on MFCC features to stay compatible
with test-only adaptation techniques reported in [7] as well as linear
discriminant analysis (LDA) features based on which Kaldi SWBD
recipe [36] estimates FMLLR transforms - which form our baseline
for the SAT training.

SAT-LHUC on AMI: Table 4 gives the WERs when we ap-
plied SAT-LHUC to the AMI dataset. The SAT-LHUC system was
trained with γ = 0.5 and was found to bring an average 3.2% relative
WER reduction on top of LHUC applied to the SI trained model, or
8% relative reduction when compared to unadapted FBANK-trained
models. The final numbers match a more complicated adaptation
pipeline that adapts with FMLLR transforms followed by test-only
LHUC adaptation.

5. CONCLUSIONS

We have proposed SAT-LHUC, an effective speaker adaptive train-
ing extension to the LHUC adaptation technique. SAT-LHUC does
not require any auxiliary models or additional SAT training stages on
top of the SI model to be effective, though it can be easily combined
with other adaptation methods to bring further gains. The standalone
variant is probably the simplest SAT approach proposed to date. This
work is further extended in [42]; in the future we plan to evaluate
whether the proposed form of SAT remains effective with other types
of non-linearities (as is the case for LHUC adaptation [16]), and an
extension to sequence discriminative training [43, 44, 36].
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