
Unsupervised Adaptation of Recurrent Neural Network Language Models

Siva Reddy Gangireddy, Pawel Swietojanski, Peter Bell and Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH8 9AB, UK
s.gangireddy@sms.ed.ac.uk, {p.swietojanski, peter.bell, s.renals}@ed.ac.uk

Abstract
Recurrent neural network language models (RNNLMs) have
been shown to consistently improve Word Error Rates (WERs)
of large vocabulary speech recognition systems employing n-
gram LMs. In this paper we investigate supervised and unsu-
pervised discriminative adaptation of RNNLMs in a broadcast
transcription task to target domains defined by either genre or
show. We have explored two approaches based on (1) scaling
forward-propagated hidden activations (Learning Hidden Unit
Contributions (LHUC) technique) and (2) direct fine-tuning of
the parameters of the whole RNNLM. To investigate the ef-
fectiveness of the proposed methods we carry out experiments
on multi-genre broadcast (MGB) data following the MGB-2015
challenge protocol. We observe small but significant improve-
ments in WER compared to a strong unadapted RNNLM model.
Index Terms: RNNLM, LHUC, unsupervised adaptation, fine-
tuning, MGB-Challenge

1. Introduction
Until recently most large vocabulary continuous speech recog-
nition (LVCSR) systems used n-gram language models (LMs)
for both first pass decodes and for later n-best list or lattice re-
scoring with either unpruned or larger LMs, usage of which in
the first pass would be otherwise computationally too expen-
sive. However, n-gram LMs, even with standard smoothing
and back-off techniques, tend to suffer from data sparsity and
lack of generalization ability for unseen sequences of words. In
contrast to n-grams, neural network language models (NNLMs)
are better able to extrapolate predictions for word sequences un-
seen at the training stage, and they have been found to be com-
plementary to n-grams [1, 2]. In particular, recurrent neural
network language models (RNNLMs) have been shown to con-
sistently improve the perplexity (PPL) and speech recognition
word error rates (WER), compared to a standalone usage of n-
gram LMs [3, 4, 5, 6, 7, 8, 9, 10].

Broad coverage (or background) LMs are typically trained
on large amounts of text data comprising a variety of domains
and topics with the intention of making the LM well matched
to the unseen testing conditions (in terms of a domain, topic
or data source). A matched LM is more likely to bring im-
provements in the final system accuracy. In many scenarios,
however, it is often the case that availability of large amounts
of in-domain data for LM training is limited; and to match test
conditions a background LM is often first estimated from a large

This research was supported by: EPSRC Programme Grant
EP/I031022/1, Natural Speech Technology (NST); the Core Research
for Evolutional Science and Technology (CREST) from the Japan
Science and Technology Agency (JST) (uDialogue project); and
the European Union under H2020 project SUMMA, grant agreement
688139. The NST research data collection may be accessed at
http://datashare.is.ed.ac.uk/handle/10283/786.

amount of out-of-domain (OOD) text and then interpolated with
a smaller in-domain LM. These approaches still rely on iden-
tifying a sub-corpus of in-domain material: alternatively, LM
adaptation can be carried out explicitly using unsupervised ap-
proaches to adapt the language model to the test data at hand.

A number of methods have been proposed to adapt
RNNLMs. For example, Chen et al. [11] explored explicit adap-
tation of RNNLMs to genre and topic using several methods,
including fine-tuning on in-domain (genre specific data), the
use of a meta-data genre code as an additional input feature,
as well as the automatic extraction of topic representations as
an additional input feature (computed by either latent Dirichlet
allocation [12], probabilistic latent semantic analysis or hierar-
chical Dirichlet process modelling). The work of Chen et al.
was carried out on the multi-genre broadcast (MGB) data used
in the MGB challenge [13] and experiments were carried out at
both the genre level and show level, with show-level adaptation
consistently out-performing genre-level adaptation.

In Multi-Domain RNNLMs [14], a bottleneck (or compres-
sion) layer is inserted between the hidden and the output layer,
which is then estimated on adaptation data. A domain fea-
ture vector is connected to the newly added compression layer,
where each dimension in the feature vector represents one do-
main. A single RNNLM is trained to adapt to multiple domains.
In factored RNNLMs, the RNNLMs are provided with some
structural information by appending structural feature vectors
(POS, Lemma and Stem) to the input feature vectors [15]. In
context dependent-RNNLMs [16], context is enhanced by pro-
viding the RNNLM with topic proportions computed from fixed
number of words preceding the current word. The maximum
entropy framework is used to adapt the LMs to the topic and
syntactic structure of the sentence [17].

LMs can be also adapted to a target domain using informa-
tion retrieval methods [18]. In [19], n-grams are adapted to a
target domain by merging the counts from ASR transcriptions
and language model data. There has been also some work on
feed-forward NNLMs domain adaptation by adding an adapta-
tion linear layer between the projection and hidden layers [7].

In this paper, we investigate unsupervised adaptation of
RNNLMs to a specific show, performing experiments on the
MGB challenge transcription task [13]. The MGB data, which
consists of subtitled BBC television broadcasts, is provided
with metadata that enables both the show and its genre to be
identified. (The genre information is provided by the BBC, ac-
cording to their standard ontology.) In our experiments we have
focused on the adaptation of the RNNLMs to a specific show
only, for which we investigate two RNNLM adaptation meth-
ods. The first one relies on learning show-dependent ampli-
tudes of the hidden unit contributions (LHUC) [20]. The sec-
ond approach directly updates the parameters of the background
RNNLM. In this work we also discuss the potential difficulties
of adapting RNNLMs when updating all parameters using un-



supervised 1-best hypotheses from decoding lattices.
This paper is organised as follows: Section 2 describes the

RNNLM architecture and details of training. In Section 3, we
briefly describe adaptation methods used in this work. Experi-
mental setup is given in Section 4. Discussions of experimental
results is given in Section 5 which are followed by conclusions
and future work included in Section 6.

2. Recurrent Neural Network Language
Model

The architecture of the RNNLM is shown in Fig 1. The inputs
to the network at time t are the index of the previous word,
encoded using 1 of N coding and the state of the hidden layer
at time t–1. The hidden activations and probability distribution
in the output layer are computed as follows:

ht = f(Whxxt +Whhht−1) (1)
yt = g(Wyhht), (2)

Where xt is the input vector, ht−1 is the state of the hid-
den layer at t–1, ht is the state of the hidden layer at time t and
yt is the modelled posterior probability distribution. f and g
are sigmoid and softmax functions, respectively. The network
is thus parametrised by θ = {Whx, Whh, Wyh}. The parame-
ters of the network are learned using back propagation through
time (BPTT) algorithm [21]. In this work truncated variant of
BPTT algorithm is used in which at each time step t the error is
propagated fixed number of steps back in time (set to 4 in this
work). The parameters of the network are learned by optimiz-
ing the cross-entropy between the output and target probability
distributions.

w yh

yt

xt

ht
whx whh

ht−1

Figure 1: Recurrent neural network language model

3. RNNLM Adaptation
In general, the background LMs are estimated from large
amounts of data covering various aspects of broadcast data. We
outline two methods to explicitly adapt the RNNLM to a genre,
topic, or show: LHUC described in Section 3.1 and fine-tuning
the whole model described in Section 3.2.

3.1. Learning Hidden Unit Conributions (LHUC)

In LHUC [20], the hidden activations of the RNNLM are scaled
by a vector of adaptation parameters rm ∈ RM for mth show.
The effective range of scaling parameters rm may be addition-
ally constrained by applying some additional element-wise non-
linearity, a(rm). After scaling, the output of hidden layer is

defined as follows:

h
′
t = ht ◦ a(rm) (3)

a(c) =
2

1 + e−c
(4)

Where h
′
t are the hidden activations after scaling and ◦ denotes

element-wise multiplication. The re-parametrisation function in
(4) is defined as a sigmoid with amplitude of 2.0, which gives
an effective scaling range of [0, 2] [22]. This allows the hidden
units to be re-weighted according to their relative importance
in modelling the show-specific distribution over sequences of
words. The potential advantages of this method lies in the
lower number of adaptation parameters θlhuc

m (for our models
0.00001% of θ) and robustness against potential over-fitting due
to learned feature detectors are not updated, which is a desired
property when adapting with small amounts of noisy adaptation
targets. In this work, we have found it beneficial to update only
forward-pass activations for adaptation, which are passed then
unscaled to the recurrent layer h

′
t, in order to avoid modifying

learned history.

3.2. Fine-tune

The parameters of an unadapted RNNLM, θ may be fine-tuned
on show specific adaptation data (obtained from a 1-best decod-
ing in our work). The set of adapted parameters for a show m

are θfine−tune
m = {W

′
hx,W

′
hh,W

′
yh}. These parameters are

learned using the standard BPTT algorithm. Since we are fine-
tuning the parameters on relatively small amounts of data there
is a possibility that the RNNLM over-fit. We experimentally
searched for the optimal learning rates on development set, and
we report the numbers for both high and low learning rates. The
experimental results are given in Section 5.2.

4. Experimental Setup
To investigate the effectiveness of RNNLMs and adapted
RNNLMs we rescored 100-best lists obtained in the MGB Chal-
lenge transcription task [23, 13]. The details of acoustic and
language models are given below.

4.1. Acoustic Models

Acoustic models were trained on 640 hours of MGB challenge
multi-genre broadcast data [23, 13], selected from an unfiltered
training set of about 1600 hours of audio (collected from 2008).
GMMs were trained on filterbank+pitch features following the
standard Kaldi recipe [24]. A six-layer DNN with 2048 units in
each layer was used to compute the posterior probability of tied
states obtained from the GMM acoustic models. Cross-entropy
was followed by two iterations of sequence training [25] (we
did not regenerate lattices after first iteration, as done in [25]).

4.2. Language Models

The MGB Challenge provided a 640M token corpus of lan-
guage model training data that contains BBC subtitle data
recorded during 1979–2013, all obtained from pre-recorded
(rather than live) subtitling. The acoustic training data for the
MGB Challenge includes about 10M transcribed words (from
both live and prerecorded subtitles): this data was not used to
train the baseline language models, but was only used for super-
vised adaptation experiments. Before training the LMs the text
data was normalised, with numbers converted to text-form and
abbreviations converted to sequences of letters.



The MGB Challenge development set comprised 47 shows
(28 hours of audio), called dev.full. In this work the parame-
ters of both n-gram and RNNLM are tuned on dev.full. A total
of four eval test sets are available for different tasks. In this
work we use eval test set for transcription task, referred to as
eval.task1, which consists of 16 shows (11 hours of audio).

A pruned 3-gram1 was used in the first pass recognition
to generate lattices and n-best lists. A Kneser-Ney smoothed
3-gram LM [26] was trained (using SRILM [27]) on 640M
words, with a vocabulary of the 150k most frequent words.
This resulted in a perplexity of 175.39 and a WER of 31.0%
on dev.full.

RNNLMs were also trained on 640M tokens of BBC sub-
title text data. Due to computational complexity of training
RNNLMs on a vocabulary of 150K words, we trained the
RNNLMs by creating input and output short-lists consists of the
most frequent words from the 150K vocabulary: in the current
work the input and output short-list sizes were 64K and 30K
respectively. Both input and output layers had an extra node to
compute the probability of out-of-short-list words, represented
as <oos>. During PPL computation and n-best list rescoring
the probability of <oos> node is distributed equally among all
short-list words. The RNNLM is trained with a batch size of
256 and learning rate of 2.02. The parameters of RNNLM were
computed by optimizing the cross entropy between output and
target probability distributions. The hidden layer consisted of
512 nodes. RNNLMs were trained on GPUs using the Cam-
bridge RNNLM toolkit [28, 29].

For LHUC adaptation, as described in Section 3.1, the scal-
ing parameters were estimated on a first-pass 1-best decoding
hypotheses. During adaptation only the LHUC scaling parame-
ters were updated. One set of scaling parameters were estimated
for each show in the dev.full and eval.task1 test sets. In addi-
tion to adapting the RNNLMs on the 1-best transcripts we also
conducted oracle experiments using the reference transcripts. A
learning rate of 1.0 (per sample learning rate=3.9× 10−3) was
used to learn the LHUC parameters. The show-specific adapta-
tion parameters were reused during n-best rescoring.

In the fine-tuning adaptation method, we alter all parame-
ters of RNNLM on the first-pass 1-best decoding. Since we are
adapting the RNNLMs on small amounts of adaptation data this
method is not robust against over-fitting. We performed a num-
ber of experiments by varying the learning during fine-tuning.
We report results using learning rates of 0.1 and 1.0.

5. Results and Discussion
The RNNLMs and adapted RNNLMs were applied by rescoring
100-best lists from the dev.full and eval.task1 transcription test
sets of the MGB Challenge. The RNNLM scores were interpo-
lated with the 3-gram scores. Since the 3-grams and RNNLMs
are trained on same of amount of data the interpolation coef-
ficients were set to 0.5 for all the ASR experimetns. To in-
vestigate how the amount of data used to train the RNNLMs
affect possible adaptation gains, we trained two RNNLMs on
two data sets comprising either full 640M (RNNLM-640M) or
limited 40M (RNNLM-40M) tokens. We used an interpolation
coefficient of 0.3 for ASR experimetns involving RNNLM-40M
LMs.

1pruning factor=1e−7

2Per sample learning rate=7.8125× 10−3

5.1. LHUC

The WERs on dev.full and eval.task1 using LHUC adapta-
tion are given in Table 1. In the first row of the Table 1, the
WERs using a pruned 3-gram LM are given. After rescoring
with the full 3-gram LM we can observe 1.6% and 1.4% abso-
lute improvements on dev.full and eval.task1, respecively. The
WERs of the RNNLM trained on 640M are given in third row
of Table 1, 3-gram+RNNLM-640M. With RNNLM-640M we
can observe 0.7% absolute improvements on both dev.full and
eval.task1. With an RNNLM trained on 40M tokens we can
observe 0.1% and 0.2% absolute improvements compared to
the full 3-gram on dev.full and eval.task1, respectively. LHUC
adaptation improves the interpolated 3-gram and RNNLMs by
0.1% absolute, for both RNNLM training cases on dev.full and
for RNNLM-640M on eval.task1. To estimate the bounds on
the possible improvements with the proposed LHUC method,
we report the WERs resulting from adapting the RNNLMs on
reference transcripts of dev.full and eval.task1. In this sce-
nario (3-gram+RNNLM-640M-lhuc-oracle) we observe 0.2%
absolute improvements both on dev.full and eval.task1. For
RNNLM-40M scenario the improvement was 0.1% absolute.

Model dev.full eval.task1
3-gram-pruned 32.6 33.6

3-gram-rescored 31.0 32.2
3-gram+RNNLM-640M 30.3 31.5

3-gram+RNNLM-640M-lhuc-1best 30.2 31.4
3-gram+RNNLM-640M-lhuc-oracle 30.1 31.3

3-gram+RNNLM-40M 30.9 32.0
3-gram+RNNLM-40M-lhuc-1best 30.8 32.0
3-gram+RNNLM-40M-lhuc-oracle 30.8 31.9

Table 1: % WERs of RNNLM and adapted RNNLM by LHUC
method. The RNNLMs are trained on 640M and 40M tokens.
For adaptation, the 1-best decoding and the reference transcripts
of dev.full and eval.task1 are used.

5.2. Fine-tuning

Model dev.full eval.task1
3-gram-pruned 32.6 33.6

3-gram-rescored 31.0 32.2
3-gram+RNNLM-640M 30.3 31.5

3-gram+RNNLM-640M-finetune-1best 30.2 31.4
3-gram+RNNLM-640M-finetune-oracle 29.9 31.1

3-gram+RNNLM-40M 30.9 32.0
3-gram+RNNLM-40M-finetune-1best 30.8 32.0
3-gram+RNNLM-40M-finetune-oracle 30.7 31.8

Table 2: % WERs of RNNLM and adapted RNNLM by the
fine-tuning method. During fine-tuning a learning rate of 0.1
is used. For adaptation, the 1-best decoding and the reference
transcripts of dev.full and eval.task1 are used.

In Table 2, we report the WERs on dev.full and eval.task1
by fine-tuning the parameters of RNNLM-640M and RNNLM-
40M. The 3-gram and RNNLM baselines are same as above.
By fine-tuning the parameters of an RNNLM trained on 640M
tokens, we can observe 0.1% absolute gains on both dev.full



and eval.task1. Similar improvements were obtained by fine-
tuning the parameters of RNNLM-40M. Similarly to LHUC
scenario, we also perform oracle adaptation experiments with
fine-tuning method. The numbers for those experiments and
RNNLM-640M model are reported in the fifth row of Table 2
which shows 0.3% and 0.4% absolute improvement on dev.full
and eval.task1, respectively. Similarly result (0.2% absolute
WER improvement) for RNNLM-40M is reported in the eight
of row Table 2.

5.3. Discussion

Tables 1 and 2 show that both LHUC and fine-tuning adapta-
tion methods improve the WER by 0.1% absolute (0.3% rel-
ative) for RNNLMs trained on either training scenario (640M
vs. 40M tokens). The improvements are small but consistent
across test sets. To find the statistical significance of improve-
ments, we performed matched pair sentence segment word er-
ror (MPSSWE) [30] tests for the considered adaptation methods
and baselines, for the RNNLM-640M case. The statistical sig-
nificance test reveals the reported improvements, though small,
are significant at p < 0.001 level. It is due to the fact that both
test sets are relatively large – dev.full consists of 200K tokens
or 28 hours of speech and eval.task1 consists of 80K tokens or
11 hours of speech.

As discussed in Section 3.1, LHUC is robust against over-
fitting, since there are far fewer adaptation parameters than the
total number of parameters in the RNN, and because feature re-
ceptors are not modified. This is not the case with fine-tuning,
in which all the parameters of RNN are altered based on small
amounts of adaptation data. It is thus likely that the RNNLM
can over-fit the adaptation data when fine-tuning adaptation is
used. For the results reported in Table 2, we used a small learn-
ing rate of 0.1 (per sample learning rate=3.9 × 10−4), during
adaptation. To investigate the effect of learning rate, we adapted
the RNNLM trained on 640M tokens to a target show with a
learning rate of 1.0 (per sample learning rate=3.9 × 10−3). In
the first row of the Table 3 we can observe 1.4% absolute im-
provement on dev.full, by adapting the RNNLM on reference
transcripts. In the second row of Table 3, we can observe that
adaptation on the 1-best decoding with high learning rate has
a higher WER than the baseline. In Table 3 we can also ob-
serve the PPLs before and after adaptation. After adaptation we
can observe 72.3% and 59.4% relative improvements over the
baseline on reference and 1-best transcripts, respectively. The
improvements on the reference transcripts suggest that, lower
WERs in the unsupervised adaptation setting may be obtained
once the adaptation process is properly regularised.

Model dev.full
PPL WER

3-gram+RNNLM-640M-finetune-oracle 153.12/42.27 28.9
3-gram+RNNLM-640M-finetune-1best 202.43/81.99 30.6

Table 3: % WERs baseline RNNLM and adapted RNNLM by
fine-tuning method. With a learning rate of 1.0

In Table 1 and Table 2 we report the average WERs of all
the shows in dev.full and eval.task1. Given we adapted the
RNNLMs at show level, we also looked at the WER (%) im-
provements at each show level. After adaptation, both proposed
methods improve the WERs of almost all the shows, with fewer
than 5 (out of 47) shows with increased WERs after adaptation.

In the MGB Challenge transcription task we also have ac-
cess to about 10M tokens from the transcriptions of the acoustic
training data. Table 4 reports WERs on dev.full and eval.full
obtained by adapting the RNNLMs on this data. Both the
3-gram and RNNLM are adapted using linear interpolation.
The full 3-gram LM is interpolated with 3-gram trained on the
acoustic training transcripts data, with an interpolation coeffi-
cient of 0.9. The RNNLM-640M is interpolated with RNNLM
trained on the acoustic training transcripts with an interpolation
coefficient of 0.9. From Table 4, we can observe that super-
vised adaptation improves the baseline by 0.1% absolute. This
is a similar improvement to unsupervised adaptation on the test
data reported above.

Model dev.full eval.task1
3-gram+RNNLM-640M 30.3 31.5

3-gram-adapt+RNNLM-640M-adapt 30.2 31.4

Table 4: % WERs of RNNLM and RNNLM adapted on 10M
tokens of acoustic transcripts

6. Conclusions and Future Work
We have investigated unsupervised adaptation of RNNLMs to
the test show in multi-genre broadcast transcription task, fol-
lowing the MGB Challenge protocol. We have investigated two
adaptation scenarios – LHUC and fine-tuning. Our experimen-
tal results indicate that WER reductions arising from unsuper-
vised test-only adaptation using either LHUC or fine-tuning are
small but statistically significant.

Our current unsupervised adaptation approach gives equal
weight to both correctly recognized and misrecognized words
in the 1-best decoding. The influence of errors during adapta-
tion could be reduced by scaling the gradients in proportion to
confidence scores of each word. In addition, as discussed above,
there is some potential in combining fine-tuning adaptation with
larger rates and appropriate regularization (e.g. KL-divergence
regularization [31, 32]) or confidence measures. It would also
be possible to explore fine-tuning only some parameter sub-
sets [32]. Finally, significant amounts of manually generated
metadata are available for broadcast transcription and it should
be possible to exploit this information to better aid adaptation
process.

7. References
[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A

neural probabilistic language model,” Journal of Machine
Learning Research, vol. 3, pp. 1137–1155, 2003.

[2] H. Schwenk, “Continuous space language models,” Com-
puter Speech & Language, vol. 21, no. 3, pp. 492–518,
2007.

[3] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, and
S. Khudanpur, “Extensions of recurrent neural network
language model,” in Proc IEEE ICASSP, 2011, pp. 5528–
5531.

[4] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and
S. Khudanpur, “Recurrent neural network based language
model,” in Proc Interspeech, 2010, pp. 1045–1048.

[5] P. Bell, H. Yamamoto, P. Swietojanski, Y. Wu, F. McInnes,
C. Hori, and S. Renals, “A lecture transcription system



combining neural network acoustic and language models,”
in Proc. Interspeech, Lyon, France, Aug. 2013.

[6] S. Gangireddy, F. McInnes, and S. Renals, “Feed forward
pre-training for recurrent neural network language mod-
els,” in Proc. Interspeech, Sep. 2014, pp. 2620–2624.

[7] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland,
“Improved neural network based language modelling and
adaptation,” in Proc Interspeech, 2010, pp. 1041–1044.

[8] X. Chen, X. Liu, M. Gales, and P. Woodland, “Recur-
rent neural network language model training with noise
contrastive estimation for speech recognition,” pp. 5411–
5415, 2015.

[9] X. Liu, Y. Wang, X. Chen, M. Gales, and P. Woodland,
“Efficient lattice rescoring using recurrent neural network
language models,” in in Proc. of ICASSP, pp. 4908–4912.

[10] S. Gangireddy, S. Renals, Y. Nankaku, and A. Lee,
“Prosidically-enhanced recurrent neural network lan-
guage models,” in Proc. Interspeech, Sep. 2015.

[11] X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan,
M. J. F. Gales, and P. C. Woodland, “Recurrent neural net-
work language model adaptation for multi-genre broad-
cast speech recognition,” in in Proc. of INTERSPEECH,
2015, pp. 3511–3515.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022,
Mar. 2003.

[13] P. Bell, M. Gales, T. Hain, J. Kilgour, P. Lanchantin,
X. Liu, A. McParland, S. Renals, O. Saz, M. Wester, and
P. C. Woodland, “The mgb challenge: Evaluating multi-
genre broadcast media recognition,” in Proc. ASRU, Dec
2015.

[14] O. Tilk and T. Alumäe, “Multi-domain recurrent neu-
ral network language model for medical speech recogni-
tion,” in Proceedings of the Sixth International Confer-
ence Baltic HLT, 2014, pp. 149–152.

[15] Y. Wu, X. Lu, H. Yamamoto, S. Matsuda, C. Hori, and
H. Kashioka, “Factored language model based on recur-
rent neural network,” in Proceedings of COLING, 2012,
pp. 2835–2850.

[16] T. Mikolov and G. Zweig, “Context dependent recurrent
neural network language model,” in SLT. IEEE, 2012,
pp. 234–239.

[17] S. Khudanpur and J. Wu, “Maximum entropy techniques
for exploiting syntactic, semantic and collocational depen-
dencies in language modeling,” Computer Speech & Lan-
guage, vol. 14, no. 4, pp. 355–372, 2000.

[18] L. Chen, J. L. Gauvain, L. Lamel, and G. Adda, “Unsuper-
vised language model adaptation for broadcast news,” in
Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings. (ICASSP ’03). 2003 IEEE International Conference
on, vol. 1, 2003, pp. I–220–I–223 vol.1.

[19] M. Bacchiani and B. Roark, “Unsupervised language
model adaptation,” in Proceedings. (ICASSP ’03), vol. 1,
April 2003, pp. I–224–I–227 vol.1.

[20] P. Swietojanski, J. Li, and S. Renals, “Learning hidden
unit contributions for unsupervised acoustic model adap-
tation,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, no. 9, pp. 1–1, 2016.

[21] P. J. Werbos, “Backpropagation through time: what it does
and how to do it,” Proceedings of the IEEE, vol. 78, no. 10,
pp. 1550–1560, 1990.

[22] P. Swietojanski and S. Renals, “Learning hidden unit con-
tributions for unsupervised speaker adaptation of neural
network acoustic models,” in Proc. IEEE Workshop on
Spoken Language Technology, Lake Tahoe, USA, Dec.
2014.

[23] P. Bell and S. Renals, “A system for automatic alignment
of broadcast media captions using weighted finite-state
transducers,” in Proc. ASRU, Dec 2015.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glem-
bek, N. Goel, M. Hannemann, P. Motlicek, Y. Qian,
P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely, “The
kaldi speech recognition toolkit.” IEEE Signal Process-
ing Society, 2011.

[25] K. Vesely, A. Ghoshal, L. Burget, and D. Povey,
“Sequence-discriminative training of deep neural net-
works,” in Proceedings of the Annual Conference of the
International Speech Communication Association (Inter-
speech), Lyon, France, Aug. 2013.

[26] R. Kneser and H. Ney, “Improved backing-off for m-gram
language modeling,” in Proc. IEEE ICASSP, vol. I, 1995,
pp. 181–184.

[27] A. Stolcke, “SRILM - an extensible language modeling
toolkit,” in Proceedings of INTERSPEECH, 2002.

[28] X. Chen, X. Liu, Y. Qian, M. J. Gales, P. Woodland et al.,
“Cued-rnnlm–an open-source toolkit for efficient training
and evaluation of recurrent neural network language mod-
els,” 2016.

[29] X. Chen, Y. Wang, X. Liu, M. J. Gales, and P. C. Wood-
land, “Efficient gpu-based training of recurrent neural net-
work language models using spliced sentence bunch.” in
Proc. of INTERSPEECH, 2014, pp. 641–645.

[30] L. Gillick and S. Cox, “Some statistical issues in the com-
parison of speech recognition algorithms,” in Proc. IEEE
ICASSP, May 1989, pp. 532–535 vol.1.

[31] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-divergence
regularized deep neural network adaptation for improved
large vocabulary speech recognition,” in ICASSP, 2013,
pp. 7893–7897.

[32] C. Liu, Y. Wang, K. Kumar, and Y. Gong, “Investiga-
tion on speaker adaptation of lstm rnn models for speech
recogntion,” in Proceedings of ICASSP, Shanghai, China,
Mar 2016.


