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Abstract
An investigation of cascaded and parallel deep neural

networks for speech synthesis is conducted. In these sys-
tems, suprasegmental linguistic features (syllable-level
and above) are processed separately from segmental fea-
tures (phone-level and below). The suprasegmental com-
ponent of the networks learns compact distributed repre-
sentations of high-level linguistic units without any seg-
mental influence. These representations are then inte-
grated into a frame-level system using a cascaded or a
parallel approach. In the cascaded network, supraseg-
mental representations are used as input to the frame-
level network. In the parallel network, segmental and
suprasegmental features are processed separately and
concatenated at a later stage. These experiments are con-
ducted with a standard set of high-dimensional linguis-
tic features as well as a hand-pruned one. It is observed
that hierarchical systems are consistently preferred over
the baseline feedforward systems. Similarly, parallel net-
works are preferred over cascaded networks.
Index Terms: speech synthesis, prosody, deep neural
networks, embeddings, suprasegmental representations

1. Introduction
Over the last decade, statistical parametric speech syn-
thesis (SPSS) has improved considerably in terms of in-
telligibility [1]. Synthetic speech is often clear and fairly
easy to understand. However, the same speech can appear
to be bland and monotonous, indicating that how to han-
dle prosody still remains a largely unsolved problem [2].
This is especially relevant when dealing with expressive
audiobook or conversational speech data. In these scenar-
ios, synthetic speech is expected to be fluid and natural.

Prosody is a fundamental aspect of human commu-
nication. It allows speakers to convey information of a
linguistic, non-linguistic, and para-linguistic nature. That
information can express dependencies between the vari-
ous units within the utterance and link them to the over-
all discourse. Due to these characteristics, it is generally
agreed that prosody is inherently suprasegmental [2, 3, 4].

This implies a conceptual division between a seg-
mental layer, operating mostly at the phone-level, and
a suprasegmental layer, operating over longer temporal

spans, such as the syllable, word, phrase, utterance, and
discourse [3]. It should however be noted that this divi-
sion is not entirely clear-cut. Fundamental frequency (or
f0), for example, which is often associated with prosodic
variation, can be affected at various linguistic levels.
Phones can be voiced or unvoiced or have higher or lower
f0 [5]. Syllables can be stressed or unstressed and words
may carry different prominence. Utterances may assume
f0 patterns which depend on where they fit in the dis-
course as a whole [3].

To achieve natural synthesis of speech prosody, a
good understanding and representation of higher-level
linguistic units is required. Furthermore, the model
which generates speech parameters must not only be
given useful representations of context at the various lin-
guistic levels, but also be able to exploit them. This
is not the case for current techniques in statistical para-
metric speech synthesis. Most approaches based on hid-
den Markov models (HMM) [6] or deep neural networks
(DNN) [7] still operate over very short intervals, at the
level of either the state or the frame. Although speech pa-
rameter generation algorithms ensure speech-like trajec-
tories, they in effect give a short-term smoothing rather
than global prosodic coherence; predictions from text
of neighbouring units are still performed independently
without exploiting any good representations of long-term
units.

Earlier work has proposed several techniques that
attempt to leverage the suprasegmental properties and
the long-term dependencies of speech prosody. Various
multi-level systems have been proposed for HMM-based
speech synthesis. Common approaches focus mostly on
modeling the f0 signal with superpositional [8, 9] or joint
[10, 11, 12] systems. For DNN-based synthesis, recurrent
[13], hierarchical [14], or mixed [15] approaches have
been proposed.

In terms of linguistic features, most work has shown
that prosodic contexts are not clearly understood. For
HMM-based speech synthesis, traditional features above
the syllable-level do not significantly affect the natural-
ness of synthetic speech [16]. In an effort to acquire a bet-
ter understanding of linguistic contexts, continuous rep-
resentations of input features have been explored, either
at the segmental [17, 18] or the word [19, 20] level. For

9th ISCA Speech Synthesis Workshop • September 13 – 15, 2016 • Sunnyvale, CA, USA

107



...

...

...

...

...

syllable-level acoustic parameters

suprasegmental featuressegmental features hidden representation

frame-level acoustic parameters

...

Figure 1: Hierarchical cascaded deep neural network.

example, [20] used distributed representations of words
learned with the skip-gram model [21, 22] and other vari-
ants. It was found that the unsupervised embeddings can
be good substitutes for manual annotation of a database.

This work proposes a hierarchical system that learns
compact distributed representations of suprasegmental
features. An initial higher-level network learns embed-
dings at the syllable level. These are then integrated into
a second lower-level network for the prediction of acous-
tic parameters at the frame level. Two methodologies for
the integration of segmental and suprasegmental features
are evaluated: cascaded and parallel.

The architectures we use in this work are closely re-
lated to those described in [14] and, for consistency, the
same terminology is adopted. However, the work detailed
here is different as it focuses on distributed representa-
tions of suprasegmental features rather than the superpo-
sitional modelling of the f0 signal. Our core system still
operates at the frame level, and jointly models source and
spectral parameters.

This paper is organized as follows: section 2 intro-
duces the basic and hierarchical DNN systems, as well
as the linguistic features used. Section 3 describes the
experiments that were conducted, stating hypotheses and
detailing objective and subjective evaluations. We con-
clude with a discussion of the results in section 4.

2. DNN-based speech synthesis
2.1. Basic network

The basic deep neural network is a simple feedforward
multilayered perceptron. We use a configuration simi-
lar to the baseline system described in [18]. A network
with 6 hidden layers is used, each layer containing 1024
nodes. The hidden layers use tanh as the activation func-
tion and the output layer uses a linear activation function.
For training, a mini-batch size of 256 is set and the max-
imum number of iterations is set to 25.

For output features, we use log-f0, 60-dimensional
mel cepstral coefficients (MCCs), and 25 band aperiod-
icities (BAPs) at 5 ms intervals. To these features, we ap-
pend their respective dynamic features (deltas and delta-
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Figure 2: Hierarchical parallel deep neural network.

deltas). The log-f0 signal is linearly interpolated and a bi-
nary voiced/unvoiced decision is appended to the acoustic
feature vector. Therefore, the complete output vector has
a total of 259 dimensions, which are then normalized to
zero mean and unit variance.

2.2. Cascaded and parallel networks

We define segmental features to be those that describe the
input at the level of the segment and below, at the phone
and frame level. We term features that represent the in-
put at linguistic levels above the segment suprasegmental
features: features at the syllable, word, phrase, and utter-
ance levels.

In the cascaded and parallel approaches, segmental
and suprasegmental features are decoupled and processed
separately. In both systems, distributed representations of
suprasegmental contexts are learned and later integrated
into a frame-level system. An initial suprasegmental net-
work is defined at the syllable-level. This network inputs
representations of context at the syllable level and above
levels and maps them to acoustic parameters defined at
the syllable level. For the current experiments, the out-
put of this network consists of a 258-dimensional vector
obtained by averaging the frame-level acoustic features
over the entire syllable. The network is set to be a 6 hid-
den layer triangular network. In terms of layer size, it is
defined as (1024, 1024, 1024, 1024, 512, 256). That is,
the top hidden layer is a bottleneck layer with 256 dimen-
sions. The hidden activation function is set to be tanh
and the output layer uses the linear activation function.
Mini-batch size is set to 16 and the maximum number of
iterations is set to 25.

Figure 1 illustrates the cascaded deep neural network
[14], which can be thought of as a top-down hierarchi-
cal network. The distributed representation of supraseg-
mental features is concatenated with the segmental fea-
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linguistic level hand-selected standard

state 2
phone 350

syllable 152 426
word 92 184

phrase - 211
utterance - 300

Table 1: Dimensionality of input features per linguistic
level.

ture vector. A second network is then trained to generate
source and spectral parameters at the frame level. Figure
2 illustrates the parallel deep neural network. In this inte-
gration strategy, segmental and suprasegmental features
are joined at a later stage. The second network inputs
only segmental features and its architecture is similar to
that of the suprasegmental network. The distributed rep-
resentation learned from both networks, each with 256
dimensions, is used to drive a single layer network that
generates acoustic parameters at the frame level.

2.3. Linguistic features

As input to the deep neural networks, we use a standard
set of linguistic features. This is the full question set used
for tree clustering in HMM-based synthesis. Linguistic
contexts obtained through a common front-end such as
the one distributed with Festival1 are defined at phone,
syllable, word, phrase, and utterance levels. Questions
are defined in terms of quinphone identity, syllable stress
or accent, part-of-speech, predicted phrase ToBI labels,
or positional information in words, phrases, and utter-
ances. A detailed description of this set can be found
in [6]. To these, we add two additional features defined at
state-level. These refer to the state number (absolute and
relative position) within the current phone after forced
alignment of the data.

A major concern with the standard set of linguistic
features is its high dimensionality. There is an imbalance
between the segmental and suprasegmental features and
many components may not be useful for frame-level pre-
diction. This is acceptable in tree-based acoustic mod-
elling, as features are not included in the final model if
they are not useful. In DNN-based acoustic modelling,
the system is forced to account for all features in the in-
put. Therefore, the question set was pruned and various
features were discarded. Features at phrase and utterance
levels were removed. Various features within the sylla-
ble and word level sets were ignored, such as forward or
backward context and several positional features. This
smaller pruned set of linguistic features is here termed
the hand-selected feature set.

1http://www.cstr.ed.ac.uk/projects/festival

Binary representations of these question sets were
used and all features were normalized to the range of
[0.01, 0.99]. Table 1 summarizes the dimensionality at
each linguistic level of each of the feature sets. Segmen-
tal features were kept constant for the standard and hand-
selected sets. Thus, only suprasegmental features vary
between the two sets.

3. Experiments
3.1. Database

These experiments were conducted on expressive audio-
book data. It is desirable to use this type of data for
these analyses as the narrator typically records entire
chapters instead of isolated sentences. This ensures that
higher-level prosodic variation is captured in the recorded
speech, thus making it ideal for investigating effects of
suprasegmental units within the utterance and discourse.

We use the audiobook A Tramp Abroad, which is
freely available from Librivox2. The data has been pre-
processed according to [23] and [24]. The hand-selected
narrated speech described in [24] was used, thus exclud-
ing highly variable direct speech data. Training, devel-
opment, and test sets of 4500, 300, and 100 utterances,
respectively, were defined for the experiments described
in this work. The data used for the listening test was ran-
domly drawn from a held-out set.

3.2. Systems and hypotheses

Given three network architectures and two sets of linguis-
tic features, six systems were trained. Two systems em-
ployed the basic feedforward deep neural network archi-
tecture (feedfwd-*), two systems the cascaded deep neu-
ral network architecture (cascaded-*), and two systems
the a parallel network architecture (parallel-*). Within
each of these system pairs, we vary the input feature
vector, either using the standard set (*-std) or the hand-
selected subset (*-hsel). These systems were constructed
to test the following hypotheses:

Addition of noisy suprasegmental features:
Adding more (suprasegmental) features to a frame-level
DNN will degrade the performance of the model. It is
expected that the baseline system with the standard fea-
ture set will perform worse than the baseline system with
the hand-selected features, as saturating a subsegmental
model with noisy suprasegmental inputs is likely to be
harmful.

Hierarchical systems: Hierarchical architectures
will outperform non-hierarchical systems. Previous in-
vestigations have suggested that exploiting various lin-
guistic levels tends to be beneficial for speech synthesis
systems. We expect cascaded and parallel deep neural
networks to outperform the basic feedforward network.

2https://librivox.org
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system MCD BAP F0-RMSE F0-CORR

feedfwd-std 4.68 2.22 28.23 .43
cascaded-std 4.60 2.19 27.43 .45
parallel-std 4.59 2.17 26.97 .45

feedfwd-hsel 4.61 2.20 27.66 .44
cascaded-hsel 4.57 2.19 27.48 .45
parallel-hsel 4.59 2.17 27.16 .45

Table 2: Objective results for trained systems. MCD is
mel cepstral distortion, BAP is band aperiodicity error,
and F0-RMSE and F0-Corr are the root-mean-squared
error and correlation between the predicted and original
f0 signal on voiced frames.

Parallel and cascaded DNNs: Parallel architec-
tures will be preferred over cascaded architectures. Al-
though using a different setup, previous work using these
methodologies has found that parallel systems tend to
outperform cascaded systems [14]. One of the disadvan-
tages of processing suprasegmental information directly
with a subsegmental network is that the system might
learn to depend highly on segmental features and ignore
long-term unit information. In a cascaded approach, even
though segmental and suprasegmental feature sets are de-
coupled, a frame-level network still has to account for
them. In a parallel architecture, this may not be the case,
as the system processes the two feature sets separately
and only concatenates them in the top hidden layer.

3.3. Objective results

Table 2 shows objective measures on the test set for all
six systems. The first block in the table denotes the three
networks operating with the full set of linguistic features.
The second identifies those that use the hand-selected fea-
ture set. Observing only the baseline feedforward net-
works, we note a small improvement when moving to
the hand-selected feature set, especially in terms of mel-
cepstral distortion. All hierarchical systems outperform
their respective baselines, although the impact appears to
be less for the systems using hand-selected features.

The parallel architecture gives the best results. It is
interesting to observe that we achieve performance that
is comparable to that when using the hand-selected fea-
tures. In terms of f0 RMSE, the system with the full fea-
ture set gives the lowest error. This is reassuring, as we
provide the syllable-level network with a larger number
of input features. This suggests that hierarchical archi-
tectures are capable of leveraging high-dimensional rep-
resentations of suprasegmental contexts. Such is not the
case for frame-level networks. In the following section,
we report a listening evaluation aimed at validating these
observations.

3.4. Subjective results

To assess the naturalness of speech samples produced by
the trained systems, we conducted a MUSHRA (MUl-
tiple Stimuli with Hidden Reference and Anchor) test
[25]. This methodology allows the simultaneous com-
parison of multiple samples. Each sentence to be tested
is assigned a set of stimuli. In our case, a single set of
stimuli includes 7 samples: one from each system de-
scribed in section 3.2 plus a final sample of matching
vocoded speech.3 This final sample is termed the refer-
ence. Within each set, samples are unlabeled and, for
each participant, the order of the samples is randomized.
Participants are then asked to judge the set of parallel
samples on a scale from 0 (completely unnatural) to 100
(completely natural) with respect to the reference sample.
The reference sample itself is included in the unlabeled
samples. This ensures that participants provide accurate
judgements and fixes the high end of the scale.

A total of 20 native English listeners participated in
the listening test. Each participant rated 20 sets of stimuli
produced from sentences taken from a held-out set. Sen-
tence order was randomized for each participant. This
allowed us to gather a total of 400 parallel comparisons.
All tests were conducted in sound-insulated booths and
all listeners were remunerated for their time.

Figure 3 shows the distribution of the stimuli for each
condition in terms of the absolute values given by the test
participants. Figure 4 shows the distribution in terms of
their rank order, as derived from the absolute values. In
these figures, feedforward networks are abbreviated as
ffwd, cascaded networks as casc, and parallel networks
as par. As before hsel indicates the hand-selected feature
set and std the standard feature set.

4. Discussion
To better understand the results, we conduct a two-tailed
paired t-test on the absolute values given by the listen-
ers. To account for multiple comparisons, we perform
a Holm-Bonferroni correction on all results. All sys-
tem pairs are significantly different at the level of p<.05,
except (ffwd-hsel, casc-hsel), (casc-hsel, casc-std), and
(par-hsel, par-std). Furthermore, we conducted a double-
sided Wilcoxon signed-rank test on the rank order results
with a Holm-Bonferroni correction. The same pattern
was observed, with the addition of two system pairs not
showing statistically significant differences: (ffwd-hsel,
par-hsel) and (ffwd-hsel, par-std).

In terms our initial hypotheses, we observe that
adding a larger number of suprasegmental features to a
frame-level network significantly damages performance.
This might be problematic when exploring a better under-
standing of longer context for prosody modeling. How-

3Speech samples can be found in: http://homepages.inf.
ed.ac.uk/s1250520/samples/ssw9.html
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Figure 3: Absolute results from the MUSHRA evaluation.
Red horizontal line shows the median and the red square
shows the mean.

ever, we also observe that hierarchical systems are able
to account for that difference if using high-dimensional
noisy features. This difference does not occur for the
hand-pruned feature set, where we failed to see sig-
nificant improvements for the hierarchical systems in
terms of rank order. This suggests that the hierarchical
models may be operating as feature selectors for high-
dimensional suprasegmental features. In our results, the
hierarchical systems using the standard set are compara-
ble to most systems using hand-selected features.

In terms of hierarchical strategies, we observe a pref-
erence for the parallel systems rather than the cascaded
systems. This follows earlier conclusions, where this
preference was also observed [14]. We could hypothesize
that the frame-level part of the cascaded systems ends up
depending too much on segmental features instead of bal-
ancing both sets. This is not the case for the parallel in-
tegration, as only one layer is used after concatenation.
Further work could investigate this interpretation of the
results by observing how the network weighs the various
groups of features using techniques such as the ones de-
scribed in [26].

As future work, the parallel neural network should be
the focus of further research. It is unknown at this point
whether decoupling the various linguistic levels could be
useful. Similarly, it would be interesting to observe if
these architectures have the capacity to leverage new fea-
tures, such as text-derived word embeddings [21, 22, 27]
or syllable bag-of-phones [27]. As suggested above, an
attempt to visualize the impact of each linguistic level in
the networks could be attempted [26]. Other lines of re-
search could investigate how these hierarchical networks
operate with recurrent systems, in a framework similar to
that described in [15]. Finally, alternative acoustic fea-
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Figure 4: Rank order results from the MUSHRA evalua-
tion. Red horizontal line shows the median and the red
square shows the mean.

tures for the suprasegmental networks were not investi-
gated. A strong possibility would be the use of selected
components from wavelet-based decomposition of the f0
signal [28, 29, 30].

5. Conclusion
Hierarchical systems structured as cascaded or parallel
deep neural networks were investigated for decoupling
segmental and suprasegmental features in statistical para-
metric speech synthesis. We have observed that, on ex-
pressive data, hierarchical systems are preferred over a
standard feedforward network if using high-dimensional
noisy features. This preference was not observed when
using a hand-selected feature set. Hierarchical systems
with a standard feature set are comparable to all systems
using hand-selected features, which suggests they oper-
ates as a mostly as denoisers. We have also observed
that parallel integration of segmental and suprasegmen-
tal features is preferred over cascaded integration. This
preference was observed on both feature sets.
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