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Abstract

This paper describes the ALISA tool, which implements a lightly supervised
method for sentence-level alignment of speech with imperfect transcripts. Its
intended use is to enable the creation of new speech corpora from a multitude of
resources in a language-independent fashion, thus avoiding the need to record
or transcribe speech data. The method is designed so that it requires minimum
user intervention and expert knowledge, and it is able to align data in languages
which employ alphabetic scripts. It comprises a GMM-based voice activity de-
tector and a highly constrained grapheme-based speech aligner. The method is
evaluated objectively against a gold standard segmentation and transcription,
as well as subjectively through building and testing speech synthesis systems
from the retrieved data. Results show that on average, 70% of the original data
is correctly aligned, with a word error rate of less than 0.5%. In one case, sub-
jective listening tests show a statistically significant preference for voices built
on the gold transcript, but this is small and in other tests, no statistically sig-
nificant di↵erences between the systems built from the fully supervised training
data and the one which uses the proposed method are found.
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1. Introduction

Over the past decade, speech-enabled applications have progressed to the
point where their presence in human-computer interfaces is almost ubiquitous.
However, this is true only for the languages for which a su�cient degree of
e↵ort has been invested in creating purposely built tools and resources. Any
speech-based application requires a large amount of high-quality data and expert
knowledge, which are time consuming and computationally expensive to collect.

In this paper we try to alleviate one of the major problems which occurs
when migrating a speech-based solution either from one language to another, or
from one set of resources to another: speech data preparation. In both speech
recognition and speech synthesis, the performance of the resulting system is
highly dependent on the quality and amount of training data. But the most
widespread method for gathering speech resources nowadays is either by record-
ing a voice talent in a studio or by manually transcribing existing recorded data.
However, both of these methods are tedious and usually deter developers from
expanding their language and/or speaker environment portfolio.

Accordingly, we turn our attention towards the theoretically unlimited sup-
ply of speech data available on the internet, of which the majority is recorded
in professional or semi-professional environments – an essential requirement to
begin with. Examples of such data include audiobooks, podcasts, video lec-
tures, video blogs, company presentations, news bulletins, etc. These resources
are even more appealing when accompanied by an approximate transcript, even
though the precise synchronisation between text and audio is not generally avail-
able.

The automatic alignment of speech and text has long been studied, and in
Section 2 we present some of the most prominent methods. However, our goal
is slightly di↵erent than theirs, as we aim to rely on no previous knowledge or
prepared data, and try to provide a solution for any language with an alphabetic
writing system.2 This is of course highly error prone, but we will show in
the Results section that the errors are minimal and negligible both for speech
recognition and speech synthesis tasks.

The paper is structured as follows: in Section 2 we describe the state-of-
the-art for speech and text alignment methods. Section 3 gives a brief overview
of the proposed method, its individual steps being expanded in Sections 4-8.
Objective and subjective evaluations of the tool are presented in Sections 9 and
10 respectively. Section 11 provides discussion and concludes the paper.

2. Related Work

Approaches to the task of speech and text alignment can be divided into two
major categories: ones where accurate orthographic or phonetic transcripts are

2Other types of writing system might be viable, but within this work we do not investigate
them.
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available, and ones where errors and omissions occur in the transcripts.3

Within the first category, the task is simply to determine a direct corre-
spondence between the acoustic units and the text symbols, whether they be
sentences, words, letters or phones. This type of method is based either on well-
trained pre-existing acoustic and language models, or on dynamic time warping
algorithms [4]. One of the challenges presented by this type of approach is the
alignment of long audio segments, for which an acoustic model based Viterbi
decoder would require a large amount of computational resources. In [5] the
authors propose a phonetic alignment for English and French, under Praat us-
ing good acoustic models, utterance segmentation, grapheme to phoneme con-
version, and manual intervention. [6] proposes a GUI for speech alignment
with integrated user feedback for manual checking and tuning, again relying
on pre-existing acoustic models and speech segmentation [7] determines a set
of anchors within the speech data, and uses a recursive, gradually restrictive
language model to recognise the text between two consecutive anchors.

In approaches from the second category, as well as determining the bound-
aries of sentences or words, the presence of transcription errors must also be
taken into account. Due to this fact, most of the proposed methods rely on very
good acoustic and language models. For example, [8] uses speaker-independent
acoustic models previously trained on over 150 hours of speech data in con-
junction with a large, smoothed language model biased towards the text being
aligned. [9] uses a phone-level acoustic decoder without any language or phono-
tactic model and then finds the best match within the phonetic transcripts.
This approach was a result of the fact that the data to be aligned may contain
a mixture of languages. [10] presents a back-tracking method for Viterbi-based
forced alignment and uses good acoustic models. It tries to align the data with
125 words, but it does not detail how to deal with long misalignments of missing
audio/text segments. [11] introduces the use of a factor automaton as a highly
constrained language model trained on the transcripts. It first divides the audio
into smaller segments, and using lower perplexity language models, the refer-
ence transcript and the recogniser hypothesis are aligned. The regions where
the alignment is less confident are processed with the factor automaton. This
method can model word deletions and substitutions. Good Hungarian ASR
models are also used in [12] in order to select good data for expressive TTS.
[13] proposes a dynamic alignment method to align speech at the sentence-level
in the presence of imperfect text data, but cannot deal with phrase reorder-
ing within the transcripts. The method of [14] detects vowels and fricatives in
speech and text and uses dynamic programming for alignment. [15] tries to
correct human-generated transcripts by employing an ASR system and a bi-
ased language model built from those transcripts. The algorithm finds word
sequences common to the ASR and human-generated transcripts and uses them

3Take for example a recording of a trial, for which the typist provides a stenotype. This will
most commonly include word deletions, substitutions or insertions, and sometimes additional
comments.
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as anchors for a finite state transducer-based forced alignment. The final re-
sult allows human intervention for the parts where the ASR system generated
a di↵erent hypothesis. A prominent aspect of methods in the second category
is that almost all of them rely on advanced acoustic and language models. This
restricts their use to languages where this type of resource is available. Switch-
ing to an under-resourced language using these methods would require extensive
pre-processing and tuning.

3. An Overview of the Proposed Method

Our method belongs to the second category defined in the previous section’s
review, but in contrast to the previous work described there, seeks to eliminate
the use of expert knowledge and thus address the issue of language-dependency.
The method is implemented in the ALISA tool which can be downloaded from
http://simple4all.org/product/alisa/.

ALISA uses a two-step approach for the task of aligning speech with im-
perfect transcripts: 1) sentence-level speech segmentation and 2) sentence-level
speech and text alignment. Both processes are fully automated and require as
little as 10 minutes of manually labelled speech. The required labelling consists
of inter-sentence silence segments for the segmentation, and orthographic tran-
scripts of these sentences for the aligner. This labelled data will be referred to as
initial training data. This manual labelling process can be easily performed even
by non-expert users, as it does not require any speech processing knowledge. In-
deed, it does not even presuppose advanced knowledge of the target language:
by following the available transcript, and having a basic knowledge of the lan-
guage’s letter to sound rules, the user can easily mark the inter-sentence silence
segments within the speech data, and also provide its orthographic transcript.

The segmentation step uses two Gaussian Mixture Models (GMM) trained
on speech and silence segments, respectively, and determines a threshold to dis-
criminate between short pauses and silence. For the alignment, we use iteratively
self-trained acoustic models and highly restricted word networks built from the
available text resource in order to drive a grapheme-level Viterbi decoder over
the speech data.

Figure 1 shows a block diagram of the steps involved in the alignment. Each
of these steps will be detailed and motivated in the following sections. The
method can be applied to any language with an alphabetic writing system,
given the availability of a speech resource and its corresponding approximate
transcript. In this paper we mainly present results obtained with an English
audiobook, but the work flow has been successfully applied to a number of other
resources in various other languages [16].

4. GMM-based Sentence-level Speech Segmentation

A common format for the speech data used in automatic speech recognition
(ASR) and text-to-speech (TTS) systems is an isolated utterance-length audio
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Figure 1: ALISA overview chart

segment and its corresponding transcript, sometimes with additional lower-level
labelling. Spoken sentence boundaries can be determined if silent segments of
the data can be determined. This is known as end-point detection or Voice
Activity Detection (VAD), a well-studied domain [17, 18, 19, 20, 21, 22, 23,
24, 25]. Of the numerous methods and parameters used for such a task, for
ALISA we selected an approach based on the Gaussian Mixture Model (GMM).
GMMs are a simple statistical model with the necessary power to discriminate
between speech and silence. To train the GMMs we use the 10 minutes of
initial training data in which inter-sentence silence segments have already been
manually marked.4. Two 16-component GMMs are then trained, one for speech
segments and one for silence segments. The observation vectors consist of energy,
12 MFCCs and their deltas, and the number of zero crossings in a frame. To
discriminate between speech and silence, the log likelihood ratio (LLR) of each
frame is computed, followed by a moving median filter used for smoothing.

Having marked the silence segments, we then need to discriminate between
intra- and inter-sentence silence segments, and discard the former. Short intra-

4No distinction is made between inhalation noises, pauses or silence segments. All of them
are marked as silence.
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Figure 2: Flow chart of the GMM-based sentence-level segmentation method

sentence pauses are eliminated by fitting two Gaussian probability distribution
functions to histograms of the durations of silence segments annotated in the
initial training data: one for intra- and one for inter-sentence silence segments.
Their intersection determines the threshold. Using the trained GMMs and this
threshold we then go on to segment the entire speech resource. A complete flow
chart of the proposed lightly supervised sentence-level segmentation is shown in
Figure 2.

It should be noted that although this method is not guaranteed to output
fully correct sentence boundaries, the output units are meaningful in terms
of spoken language. Individually aligning these units, rather than as a whole
sentence, can increase the total duration of the output data. This is due to the
fact that most forced-alignment algorithms perform poorly when long silence
segments are present within an utterance.

5. Speech Recognition with a Skip Network

In limited vocabulary ASR tasks, or when the approximate transcript of
the speech is known, a common practice is to use a biased language model to
constrain the decoding process. This has been successfully applied to both TTS
[8] and ASR [26] speech database creation, but in both cases the underlying
acoustic models were significantly better than the ones we adopt.

We therefore take advantage of the high correlation between speech and text
present in the resources, and fit the language model very tightly to the available
transcript. As a result, we introduce a highly constrained word network, called a
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(a) 1SKIP

(b) 3SKIP

(c) 3SKIP with LM

Figure 3: Word skip network design.

a skip network, illustrated in Figure 3. The skip network is used to constrain the
Viterbi decoding of each audio segment. The basic model of the network allows
the audio segment to be matched anywhere within the transcript, but limits the
output to a consecutive sequence of words from it. To minimise the search space,
for each utterance we define a text window around the approximate location of
the audio. The text window is based on the average speaking rate computed
from the length of the speech data and number of words in the transcript.
The architecture is similar to that used in [11] for ASR training, but a full
FST framework is not required due to the use of text windows. Also, the skip
network does not allow insertions, a fact which also limits the errors within the
recognised output.

We define two types of skip network which di↵er only in the number of words
they can skip, and therefore the type of audio errors they allow. The 1SKIP
network (Figure 3a) allows the models to match the audio at any starting point
within the network, but once this point is determined, they can only skip to the
next consecutive word or to the sentence end marker. This type of network helps
to approximately identify the location of the utterance within the text window,
but it does not account for audio deletions. The 3SKIP network (Figure 3b)
has the same skip-in and skip-out arcs, but it also allows audio deletions of up
to 2 words. To ensure a better representation of the text in the word networks,
we also used a näıve language model: a list of bigrams generated from the
original text which ensures that the arcs which are not in the bigram list are
deleted (Figure 3c). These skip networks are used in conjunction with the
acoustic models and make the alignment of large amounts of available speech
data possible.

Since the publication of our previous work [1], the skip network model has
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been applied, with minor modifications, in two other scenarios [27, 28]. Their re-
sults show an even higher accuracy of the recognised output when good acoustic
models are also available.

6. Acoustic Model Training

In the current scenario, the acoustic model training must take into consider-
ation a series of hypotheses which are not usually met within the conventional
training setup. The hypotheses pertain to the lack of a phonetic dictionary, the
unknown alignment between speech and text, and the imperfect transcripts. In
the following subsections we describe the ideas and methods which make the
alignment of large amounts of speech data possible, without the need to fall
back on supervised, expert knowledge-based procedures. There are two ma-
jor parts to the acoustic model training: the first part consists of an iterative
grapheme-level acoustic model training procedure, starting from only 10 min-
utes of orthographically transcribed speech. The second part aims at lowering
the sentence error rate of these models by using discriminative methods and
tri-grapheme models.

6.1. Lightly supervised ML training with imperfect data

[29] introduces an iterative method for acoustic model training starting from
a limited set of transcribed data. This method fits our scenario perfectly, with
the exception of requiring a phonetic dictionary. However, several previous stud-
ies [30, 31] have shown that for most languages, recognition accuracy does not
drop significantly when using graphemes instead of phones.5 But by combining
two highly error-prone methods of training acoustic models, the recognition out-
put might include additional errors which would potentially make the iterative
procedure fail. The solution comes from the works of [32, 33, 26, 34, 29, 35, 36].
These studies evaluated the influence of transcript errors present in the training
speech database, and concluded that within certain limits, the drop in accuracy
is negligible.

Following these previous findings, we considered that a system using in-
cremental self-training, grapheme-based models and relying on imperfect tran-
scripts should be accurate enough for our purposes. We therefore relied on such
a system to provide a starting point for the alignment. The full description of
the procedure is as follows: the initial training data with manual orthographic
transcripts is used to build the initial grapheme models. The initial models are
mono-graphemes with 5 states in a left-to-right configuration, 8 mixture com-
ponents per state, and no state or mixture tying. These models in combination
with a highly restricted word network (presented in Section 5) output a prelim-
inary recognition result. The result is then filtered using a confidence measure,

5The exception being, of course, English. This is one of the reasons why our evaluations
use English as the primary language: what can be achieved on English data should be easily
achievable in other languages with simpler grapheme-to-phoneme conversion rules
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and the confident data is then used to retrain a new set of acoustic models.
In our initial studies we determined that repeating these steps more than once
is computationally expensive, and did not give significant improvements in the
amount of confident data or its accuracy.

6.2. Lightly supervised MMI training

In conventional maximum likelihood (ML) acoustic model training, the ob-
jective function does not take into account the classification decisions made by
the acoustic models. This leads to a higher sentence error rate (SER), the score
which we are trying to reduce. An alternative is to use discriminative training
with the Maximum Mutual Information (MMI) criterion [37, 38]. It can be
shown that the expected error rate converges to the model-free expected error
rate as the amount of training data increases: in other words, MMI does not
require the correct generative model to be used in order to be e↵ective.

But again, for the practical application of MMI training in the low-resource
lightly supervised setting there are a series of problems which arise. The first is
that as the MMI objective function is based on the di↵erence between numerator
and denominator terms and it is important to avoid giving negative weights to
the correct utterances through the use of incorrect training labels. This problem
has been considered by [39].

Secondly, the denominator lattices are usually built using a weakened version
of the language model. But in this scenario, the availability of such a model is
highly unlikely for most languages. An alternative is to generate denominator
lattices over graphemes, similar to early approaches to discriminative training
for ASR, such as [40] where phone-level lattices were used. To test this hy-
pothesis, in Section 9.3 we also compare performance when using word-level
denominator lattices. Both word– and grapheme–level training used a bigram
language model derived from the original text.

6.3. Tri-grapheme re-estimation and data-driven state tying

One other conventional method for improving the accuracy of the acoustic
models is to extend the context of the acoustic units, most commonly through
the use of immediate left and right context, i.e. triphones, or in our case tri-
graphemes. As no phonetic information was available in our setup, the list of
tri-graphemes was extracted directly from the text. This did not allow the
models to generalise well to out-of-vocabulary words, but it did ensure good
performance on the available data.

As in most cases the amount of training data is limited, and so the number
of acoustic models whose parameters need to be estimated should be reduced.
To achieve this, we modelled only within-word contexts, and data-driven state-
tying was employed. This used a decision tree built with questions regarding
only the identity of graphemes in a unit’s trigrapheme context.
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6.4. Full Acoustic Model Training Procedure

As there are several steps involved in the acoustic model training, we re-
iterate them, and give a more compact description. Figure 4 presents the full
acoustic model training procedure. The seven acoustic models shown in Figure
4 will be referred to using following short identifiers:

¿ ML-G – iterative ML training of mono-grapheme models. There are two
ML-trained acoustic models built in this step: the initial ones built on
only 10 minutes of manually transcribed training data (G0-ML), and
the models trained on the confident data obtained from the prior ones
(G1-ML);

¡ G-MMI-GL – iterative ML training of mono-grapheme models followed
by MMI with grapheme-level lattices;

¬ TG-MMI-GL- iterative ML training of mono-grapheme models followed
by MMI with grapheme-level lattices and tri-grapheme re-estimation;

√ TTG-MMI-GL – iterative ML training of mono-grapheme models fol-
lowed by MMI with grapheme-level lattices and unsupervised state-tying
tri-grapheme re-estimation;

ƒ G-MMI-WL – iterative ML training of mono-grapheme models followed
by MMI with word-level lattices;

≈ TG-ML – iterative ML training of mono-grapheme models followed by
tri-grapheme re-estimation;

∆ TG-MMI-WL – iterative ML training of mono-grapheme models fol-
lowed by MMI with word-level lattices and tri-grapheme re-estimation.

The three branches are used for di↵erent acoustic model comparisons. The
first branch (models 1 , 2 , 3 and 4 ) represents the configuration found to
achieve best results. Models 2 and 5 are used to compare the lattice building
method for the MMI discriminative training. The third branch (models 6 and
7 ) is used to determine whether the discriminative training should be performed
before or after the tri-grapheme re-estimation.

7. Confidence Measure

Estimating the correctly recognised speech in an ASR system requires a
purpose-designed confidence measure [41]. In our scenario, the transcription
errors that might occur during recognition are critical as the resulting data will
be used to build other speech-enabled systems. If for speech recognition systems
these errors are less important,6 for speech synthesis [42] showed that above a

6We are in fact relying on this to iteratively train our initial acoustic models.
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Figure 4: Schematic diagram of acoustic model training steps.

certain threshold, these errors can introduce additional artefacts and produce
an unnatural voice.

In standard confidence measures a posterior probability is computed against
a general language model [41]. However, the availability of a language model in
most languages cannot be assumed. We therefore resorted to our grapheme-level
acoustic models and the skip networks to o↵er some insight into the ranking of
confident data. The structure of a 1SKIP network cannot take into account
the deletions made by the reader, and therefore cannot determine correctly if
these deletions did not actually occur in the speech material. But when allowing
the network to skip one or several words (such as in a 3SKIP structure), and
the recognised output is the same as the one obtained with the 1SKIP, we can
assume that the models are confident enough with regard to the recognised
output. This means that the acoustic likelihood scores obtained with 1SKIP
and 3SKIP networks should be roughly the same for a confidently recognised
utterance.

It is also important to establish the fact that the output is above chance-
level, and that the 1- and 3SKIP networks did not enforce the same wrong state
path for the models. A so-called background model – a single, fully connected,
ergodic HMM with five states and eight mixture components per state, trained
on all the speech material – can be used to provide a baseline acoustic score.
This model is similar to the one used in [43].
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As a result, we devised a confidence measure based on several acoustic like-
lihood scores, as follows:

• S1 - recognition with 1SKIP network;

• S2 - recognition with 3SKIP network;

• S3 - recognition with a background acoustic model;

Confident utterances were considered those for which the following condi-
tions apply:7

(S1 ⇡ S2) ^ (S1 > S3) (1)

Two additional constraints ensured an even better performance of the con-
fidence measure:

• the length of the recognised utterance has to be above a given number of
words, as shorter utterances are more likely to be misrecognised;

• the average likelihood score within each recognised word has to be above
a precomputed threshold. This makes it possible to detect potential audio
insertions, and especially those at the beginning and end of utterances.

This confidence measure makes it possible to select only the utterances which
are most likely to have been correctly recognised, and can therefore either be
used to re-estimate the acoustic models, or provide the final aligned data set
(see Figure 1).

8. Pre- and Post-Processing

Given the lightly-supervised nature of the entire alignment method, a num-
ber of pre- and post-processing steps are required to make best use of the poor
acoustic models. These steps are also lightly supervised, and developed to pro-
vide as much language independence as possible.

The pre-processing included mostly text processing components, such as:

(a) text cleaning - all non-alphabetic characters are removed from the original
text, and the non-ASCII characters are replaced by two letter substitutes.

(b) a list of graphemes – the text is trivially scanned for all distinct alphabetic
characters.

7Note that as opposed to the confidence measure used in our previous work [1, 3], here we
relax the equality condition between the S1 and S2 acoustic scores, and round them to the
first decimal digit. This proved to be a more e�cient way to harvest the correctly recognised
utterances, and we show in the results section that their accuracy remains within previously
stated limits.
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(c) a list of bigrams – bigrams are used in the word skip network building, so
a list of all pairs of consecutive words in the text is extracted. No sentence
boundary markers are used.

(d) a grapheme dictionary - all distinct words are expanded into their con-
stituent graphemes for use in the speech recognition part.

Post-processing refers to minimising the errors which occur in the selection
of confident data, and would therefore limit its usability in various applications:

(a) sentence boundary correction - based on the text-based sentence-level seg-
mentation, the recognition output was corrected for sentence-initial and
sentence-final word insertions or deletions. Errors involving short words
at the beginnings and ends of sentences are the most common type in the
recognised output.

(a) punctuation restoration - using the original text transcript, we restored
punctuation to the recognised output. This ensures the possibility to use
the aligned data in TTS systems where punctuation provides important
features for predicting pause locations.

9. Objective evaluation

9.1. Data description and preparation

For evaluation of the proposed method, we used a public domain audiobook,
A Tramp Abroad by Mark Twain8 and its corresponding text.9 It contains
around 15 hours of speech, uttered by a male speaker and segmented into 50
chapters and 6 appendices. Error rates of the alignment were computed against
a sentence-level segmentation of speech supplied for the 2012 Blizzard Chal-
lenge.10 Gold standard (GOLD) transcripts were kindly provided by Toshiba
Research Europe Limited, Cambridge Research Laboratory. [8] reports a 5.4%
word error rate when comparing the book text with the GOLD transcript.

Additional tests were carried out using a French audiobook, Candide ou
l’optimisme by Voltaire.11 It contains around 4 hours of speeech, uttered by
a male speaker and segmented into 30 chapters. To derive a gold standard
(GOLD) segmentation and transcription, we used the closed captions available
on CCProse’s Youtube channel.12 The time alignment was manually checked,
and the data was segmented at the sentence-level using this annotation. The
word error rate for this audiobook, as computed against the manual transcrip-
tion is 3.6%.

8
http://librivox.org/a-tramp-abroad-by-mark-twain/

9
http://www.gutenberg.org/ebooks/119

10
http://www.synsig.org/index.php/Blizzard_Challenge_2012

11Audio: http://librivox.org/candide-by-voltaire-2/
Text: http://www.gutenberg.org/cache/epub/4650/pg4650.txt

12
http://www.ccprose.com/
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Table 1: Results of the GMM-based sentence-level segmentation. The indices are computed
against the GOLD segmentation of the English audiobook.

FEC MSC OVER NDS CORR

0.30% 1.12% 2.05% 0.27% 96.26%

The first 10 minutes of both audiobooks were manually labelled with inter-
sentence silence segments. The segmented sentences were then orthographically
transcribed. The text window was set to 2800 words for the English audiobook,
and 2200 for the French one. The length of the window is based on the average
word duration and the length of both audio and text. Initial experiments using
average grapheme duration-based length of the text window did not drastically
reduce the search space.

9.2. Objective evaluation of the segmentation

The performance of the sentence-level segmentation GMM-based algorithm
was compared against the provided segmentation for the English audiobook.
The number of correctly detected sentence boundaries is 74% of the total num-
ber of sentences. And although we determined a threshold to discriminate be-
tween the short pauses and the sentence boundaries, there were still a number of
intra-sentence silence segments which are considered sentence boundaries. But
this is inevitable, as the speaking style within the book is highly expressive, and
thus the pause duration may vary from chapter to chapter.

To evaluate the GMM-based silence detection algorithm, we resort to the
standard measures for end-point detection algorithms [23, 24, 25]. Table 1
shows these results for our method. The measures represent:

• FEC - Front End Clipping - speech classified as silence when passing from
silence to speech;

• MSC - Mid Speech Clipping - speech classified as silence within a speech
sequence;

• OVER - silence interpreted as speech at the end of a speech segment;

• NDS - Noise Detected as Speech - silence interpreted as speech within a
silence part.

And CORR is computed as:

CORR = 100� (FEC +MSC +OV ER+NDS) (2)

In our scenario, the MSC and OVER measures are most relevant due to the
use of the segmented data for building other speech-enabled systems.
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Table 2: Comparison of sentence (SER) and word error rates (WER) for the G0-ML and
G1-ML acoustic models, when using a language model built from the book text, or the skip
networks. For the 3SKIP network we also show the results when the skips in the network are
constrained to be valid bigrams within the book text (see details in Section 5). The results
are computed for the English audiobook against the GOLD standard transcription.

G0-ML G1-ML

Language model SER WER SER WER

[%] [%] [%] [%]

Book LM 95.34 46.53 90.12 38.67

1SKIP 22.51 2.98 21.13 3.33

3SKIP 79.51 11.65 62.12 10.45

3SKIP with LM 50.56 5.50 47.20 5.12

9.3. Objective evaluation of the alignment results

The objective analysis of the alignment algorithm was performed against
the GOLD transcripts of the data, and using the supervised segmentation. We
evaluate all of the main components and steps of the alignment method, and
provide results in terms of word error rate (WER) and sentence error rate (SER).
The latter is essential when using the data for text-to-speech synthesis systems.
All results are reported mainly for the English audiobook, while the French
audiobook is used as additional reference for the critical steps of the method.

Starting from the 10 minutes of manually transcribed speech, an initial set
of grapheme-level ML acoustic models, G0-ML, was trained. The models are
mono-grapheme models, having 5 states and 8 mixtures per state with a left-
right structure. These models are used in conjunction with the skip-networks
to perform a first pass over the data, and thus obtain a first set of alignments.
These alignments will in turn be used as training data for a new iteration of the
acoustic model building and data alignment, G1-ML.

Table 2 shows the error rate improvement when using the skip networks,
as opposed to a simple language model built from the book text. It can be
seen that given poor acoustic models trained only on 10 minutes of data, the
accuracy of the simple LM is very low (i.e. less than 5% sentence-level accuracy).
However, when restricting the output to consecutive words within the assigned
text window (i.e. using the 1SKIP network) the accuracy increases to over 75%.
The 3SKIP network, however, attains an accuracy which is closer to the trigram
LM. This low accuracy is much improved when restricting the skips within the
network using a bigram list obtained from the book text. In this case, the
relative increase in accuracy is over 100%.

Based on these initial results, we expect the confidence measure to be able
to extract a percentage of data which is approximately equal to the accuracy
of the 3SKIP with LM output. However, slight di↵erences might occur due to
the additional conditions imposed for the confident files, such as the number of
words within the utterance, or low likelihood scores for long silence segments.
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Table 3: Comparison between the percentage of confident utterances, sentence (SER) and
word error rates (WER) obtained from the G0-ML and G1-ML acoustic models. The results
are computed for the English audiobook against the GOLD transcript.

Percent SER WER

Acoustic model [%] [%] [%]

G0-ML 48.23 12.14 0.74

G1-ML 56.98 11.15 0.58

Table 4: The influence of the amount and quality of training data transcription over the
accuracy of the grapheme MMI model. The error rates are computed for the 3SKIP with LM
network.

SER WER

Training Data [%] [%]

GOLD 54.12 4.86

CONF 56.30 5.94

ALL 57.98 5.97

G0-ML 60.12 6.55

Table 3 shows the percentage of confident data extracted using the G0-ML and
G1-ML acoustic models, as well as its accuracy at sentence and word-level. It
can be seen that even with these preliminary acoustic models, but with the help
of the skip networks, more than half of the original data can be aligned, its SER
and WER being 11% and 0.6%, respectively.

The next step of the ALISA tool consists of discriminative training. However,
using imperfect training data with it requires us to establish the influence of the
transcription errors on the performance of the acoustic models. To do this,
we applied MMI training to initial ML-trained mono-grapheme models using
di↵erent sets of the reference transcript. Table 4 presents results in four cases:
GOLD denotes the entire audiobook data with the ground-truth transcript; CONF
represents only the confident utterances selected by the alignment procedure
using the ML mono-grapheme acoustic model (approx. 54% of the data); ALL
is the entire data with transcriptions obtained using the ML mono-grapheme
acoustic model; finally, G0-ML represents the recognised output of the initial ML
acoustic model.

It may be observed that the MMI training is relatively robust to the use
of possibly incorrect transcriptions. Even when using the output of the G0-ML

acoustic models versus the GOLD transcript, the error rate does not increase
significantly. For the following experiments we adopt the use of the CONF set as
training data.

Also, as described in Section 6.2, there are two possible types of lattice for
MMI training, word and grapheme-level lattices. We evaluated both methods
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Table 5: Evaluation of the performance of all acoustic models shown in Figure 4. The results
for All data are evaluated using the 3SKIP with LM network.

All data Confident data

Acoustic model SER WER Percent SER WER

[%] [%] [%] [%] [%]

1 G1-ML 47.20 5.12 56.98 11.15 0.58

2 G-MMI-GL 56.30 5.94 71.63 18.74 1.42

3 TG-MMI-GL 24.41 2.67 78.55 7.42 0.48

4 TTG-MMI-GL 21.82 2.30 79.34 6.83 0.44

5 G-MMI-WL 57.34 6.00 69.40 19.13 1.59

6 TG-ML 56.83 5.87 70.34 17.20 1.32

7 TG-MMI-WL 25.66 2.95 70.37 7.54 0.82

in terms of SER and WER, as well as the amount and quality of the confi-
dent data extracted with these models. Table 5 presents this evaluation. The
acoustic model numbers are in accordance with those in Figure 4. Although the
di↵erence between grapheme and word level lattices in terms of SER and WER
for the entire data is minor, the amount of confident data obtained with the
G-MMI-GL model is higher. This means that the grapheme-level lattices deter-
mine the acoustic models to be more confident even when using a 3SKIP with
LM network, and thus fulfilling the confidence measure’s conditions.

Tri-grapheme re-estimation is also a way to improve the recognition accu-
racy of the acoustic models. However, it is important to establish if it should be
performed before or after the discriminative training, given the fact that the dis-
criminative training might introduce additional errors. Yet when adding context
to the models, starting from good baseline models is essential. Therefore, as the
numbers in Table 5 show, tri-grapheme re-estimation should be performed after
the MMI training (compare the results of G-MMI-GL and TG-ML). Data-driven
state-tying (model TTG-MMI-GL) brings even more benefits with a 4% increase in
the amount of confident data, and a 40% relative increase over the ML models,
for the same levels of error. These results are comparable in WER to those
presented in [8], where good acoustic and language models are used to align the
data.

To conclude the evaluation of the various steps in ALISA, in Tables 6 and 7
we show an overview of the results obtained with both audiobooks (i.e. English
and French), and for each acoustic model that is present in the main processing
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Table 6: Error rates for the objective evaluation of the alignment method for the English
audiobook. Acoustic model numbers correspond to those in Figure 4. The All Data results
are reported using the 3SKIP with LM network.

All data Confident data

Acoustic model SER WER Percent SER WER

[%] [%] [%] [%] [%]

1 G0-ML 50.56 5.50 48.23 12.14 0.74

1 G1-ML 47.20 5.12 56.98 11.15 0.58

2 G-MMI-GL 56.30 5.94 71.63 18.74 1.42

3 TG-MMI-GL 24.41 2.67 78.55 7.42 0.48

4 TTG-MMI-GL 21.82 2.30 79.34 6.83 0.44

pipeline.13 It is important to notice that due to its shorter length,14 the French
audiobook achieves lower alignment percentages. However, the trend for each
acoustic model is similar. One important thing to notice for the French audio-
book is the high relative increase in accuracy of the tied trigrapheme models
over the trigrapheme ones (55% relative increase). This is of course a result
of the insuficient speech data versus the number of distinct trigraphemes, and
this supports the idea that a simple left–right immediate context can have an
important e↵ect on the accuracy of the poor grapheme models.

Although we did not provide accurate evaluation of the alignments in our
previous study [16], we showed that for various languages the algorithm is able
to extract on average 68% of the original data. This data was then used to train
speech synthesis systems, and the results showed good intelligibility scores for
most languages.15

As the reported results in this paper are mostly for an English audiobook,
an interesting comparison of ALISA’s results is also against a state-of-the-art
ASR system, trained in a supervised manner on large quantities of audio data
from a di↵erent domain. For this purpose, we use a system trained on 150
hours of transcribed TED talks freely available online.16 The system uses 6-
layer deep neural networks, which are used to generate posterior probabilities
over approximately 6,000 tied triphone states. These are converted to pseudo-
likelihoods for use in a standard HMM-based decoder, using a trigram LM
trained on 300M words of TED transcriptions, News Crawl and Gigaword text.
Speaker adaptation to the audiobook data was performed using feature-space
MLLR. The system is described more fully in [44].

13See the first branch in Figure 4.
14Only 4 hours, compared to the 15 hours of English
15We are now investigating the influence of the language, speaker and recording conditions

to determine a correlation between these factors and the system’s ratings.
16www.ted.com
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Table 7: Error rates for the objective evaluation of the alignment method for the French
audiobook. Acoustic model numbers correspond to those in Figure 4. The All Data results
are reported using the 3SKIP with LM network.

All data Confident data

Acoustic model SER WER Percent SER WER

[%] [%] [%] [%] [%]

1 G0-ML 79.65 19.29 44.82 27.50 7.75

1 G1-ML 52.79 6.98 51.66 12.76 0.62

2 G-MMI-GL 54.32 6.17 53.50 19.50 0.96

3 TG-MMI-GL 49.33 10.84 57.51 14.22 0.69

4 TTG-MMI-GL 27.46 3.38 65.69 7.22 0.30

Table 8: Error rates of the entire speech data for state-of-the-art ASR system unadapted with
a general language mode, state-of-the-art ASR system with adapted acoustic models, state-
of-the-art ASR system with adapted acoustic models and biased language model, ALISA and
ALISA with a supervised phonetic lexicon. The ALISA results are reported using the 3SKIP
with LM network.

SER WER

System [%] [%]

ASR unadapted, general LM 78.54 13.89

ASR adapted, general LM 74.25 11.29

ASR adapted, biased LM 24.48 2.18

ALISA 21.82 2.30

ALISA supervised lexicon 18.57 2.12

We compare results from this system with its original LM, and with a LM
biased to the audiobook text, as well as a version of ALISA which uses an expert-
specified lexicon instead of graphemes. Results for the recognition accuracy of
these models are shown in Table 8.

It can be seen that ALISA’s WER is similar to that of our best performing
standard ASR system, and that ALISA’s SER is better. This is a very positive
result given the ALISA’s lack of dependency on existing resources. For the con-
figuration in which ALISA used an expert-constructed lexicon, the amount of
confident data was 81.78% with a SER of 6.92% and WER of 0.55% – an im-
provement over the grapheme-based system, although the error rates are slightly
higher. This was to be expected, especially for English, as the letter-to-phone
mapping can be quite complex, and a correct phonetic transcription of the data
enables the models to be estimated more accurately. However the small relative
improvement does not justify making the use of a lexicon a definite requirement
for ALISA.

19



10. Subjective Evaluation

A previous subjective evaluation of an earlier version of ALISA was pub-
lished in [2]. The preference listening tests included 3 systems: fully automatic
segmentation and alignment; supervised segmentation and automatic alignment;
and fully supervised segmentation and alignment. The results showed no defi-
nite preference for any of the systems.

Given the changes to ALISA that have taken place since the time of the
previous results, we re-ran the listening tests using a similar preference test. As
the segmentation algorithm is the same, we only evaluate two conditions: fully
automatic alignment and segmentation and fully supervised segmentation and
alignment. The test is, however, performed using material in two languages,
English and French. Conventional supervised front-ends were used to generate
full-context labels for HMM-based speech synthesis training from all transcripts:
both the ALISA generated ones as well as the GOLD standard ones. For the
English ALISA and GOLD systems we used the English front-end distributed
with the Festival system.

For the French ALISA and GOLD systems we used the web-based system
described in [45].

The amount of potential training data obtained from the ALISA and GOLD
alignments is di↵erent, as ALISA presents only the confident utterances for
training while the gold standard annotation covers all the data. We wished
to focus on the di↵erence in TTS output due to alignment quality; to prevent
the di↵ering quantities of data obscuring this, we used the same duration of
training data for di↵erent systems in either language. For French, this was
the duration of ALISA’s output after material was held out for testing: 84
minutes. For English we used five hours of data to build each voice. In the first
evaluation we ran, the same utterances were used for building the GOLD and
ALISA voices – that is, all utterances were from the set marked by ALISA’s
confidence measure to be correctly annotated, although in the GOLD case, the
correct annotation is guaranteed. These subsets are termed ALISA and GOLD-
CONF. A second separate evaluation was run, in which the GOLD voices did not
depend on ALISA’s confidence measure – the training utterances for these voices
were selected at random from the GOLD set until the duration of the selected
utterances and the ALISA sets were the same. These new GOLD subsets are
termed GOLD-RAND. The results of this second evaluation can show whether
the confidence measure we have devised has any benefit beyond determining the
correctness of transcriptions. For all voices, the speech data were parameterised
as described in [46] using the high-quality STRAIGHT vocoder [47]. For all
voices, speaker-dependent acoustic models were trained on this parameterised
speech data using a speaker-dependent model-building recipe essentially the
same as that described in [48].

For testing, the text of 90 medium-length sentences (consisting of between 5
and 31 words) were taken from the held-out GOLD transcripts in each language
and used as input to the trained models to produce speech waveforms. For both
evaluations (comparing voices built on the GOLD-CONF and GOLD-RAND
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sets with voices built on ALISA, respectively), the following procedure was
followed. For each language, 10 paid native speakers of the target language
were asked to listen to 90 pairs of these stimuli and asked to choose the more
natural one. In each of the 90 pairs the same text was synthesised by the GOLD
and ALISA systems. Both the ordering of the 90 pairs and the order of systems
within each pair was randomised separately for each listener. The listening test
was conducted in purpose-built listening booths using high-quality headphones.
Di↵erent listeners were employed for each of the two evaluations (GOLD-CONF
and GOLD-RAND ).

Figure 10 shows the results of the two evaluations. The leftmost bar of the
figure shows that there is a small but significant preference for the English sys-
tem built using the correct transcripts of utterances selected by ALISA over the
one using ALISA’s transcripts. This is in contrast to earlier results where there
was no statistically significant di↵erence between voices built on similar data
sets [2]. The second bar, however, shows that the preference is not significantly
di↵erent from chance (50%) in the case of the French voices. It is possible that
the di↵erence in performance between the French and English systems is due
to the fact that the French voice was trained on less data and of lower over-
all quality, whereas the English voice was of su�cient quality for the improved
transcript to have a perceptible impact on the quality of its output. However,
the two bars on the right of Figure 10 show that ALISA’s confidence measure
is doing something useful beyond determining whether utterances are correctly
transcribed or not. In both English and French, using the set of utterances
determined by ALISA’s confidence measure results in synthetic speech which is
significantly preferred over speech from systems trained using the same amount
of correctly transcribed but randomly selected data. This result contrasts with
results in ASR, where data selection using a confidence measure can lead to
biased estimates and harm performance [49].

A di↵erent subjective evaluation of the ALISA tool was presented in [46]
where the intelligibility of 5 TTS systems in 5 di↵erent languages was evaluated.
However, the front-end of those systems was also lightly supervised and built
according to the methods presented in [50], which means that the results are
not directly comparable to those presented here.

11. Conclusions

Using speech resources available online is an important step in adapting
existing speech-based technologies to a multitude of new languages. We have
therefore introduced a two-step method for aligning speech with the type of
imperfect transcripts often found in online resources. The two steps consist
of a GMM-based sentence-level segmentation and an iterative grapheme-level
acoustic model building and aligning. The method uses only 10 minutes of
manually labelled data, and it is able to extract on average 70% of it, with a word
error rate of less than 0.5%. This is possible due to the use of a segmentation
model which is built from the original data itself, and the use of an iterative
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Figure 5: AB preference score results of the listening tests for English and French. ALISA
systems use the training data obtained with fully automatic segmentation and alignment.
GOLD-CONF systems use the same utterances as ALISA but use a gold-standard segmen-
tation and alignment. GOLD-RAND systems use a random selection of utterances from the
gold-standard segmentation and alignment of the same duration as the ALISA systems. 95%
confidence intervals computed using a binomial test are shown.

acoustic model training procedure, which makes use of a highly restricted word
network, called a skip network.

Due to the aim of aligning data in a number of di↵erent languages, the lack
of expert or prior knowledge when training the acoustic models imposes a series
of additional problems, such as defining a confidence measure for the recognised
output, deciding between the use of word or grapheme level lattices for the
discriminative training, selecting a proper tri-grapheme set, or defining a set
of questions for the state tying. All these issues are analysed using an English
audiobook, for which the GOLD standard segmentation and transcription are
available. Additional results were presented for a French audiobook, but only
for the processing pipeline previously found to be best. We also compared our
results against a state-of-the-art speech recognition system, as well as a version
of our tool which uses a supervised lexicon instead of graphemes. These results
showed that ALISA with a supervised lexicon outperforms even our best ASR
system.

Subjective listening tests were conducted to determine how much the errors
within the aligned dataset influence the quality of a text-to-speech synthesis
system as this is the major goal of our work. In one case, our evaluations showed
a statistically significant preference for voices built on error-free transcripts,
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but this was small and in other tests, no statistically significant preferences for
systems built on the supervised segmentation and alignment were found.

In conclusion, the ALISA tool can represent a starting point in building
new speech datasets in various languages, starting from found data and with
minimal user intervention.

As future work, we would like to investigate the use of non-alphabetic lan-
guages, multi-speaker databases, and suboptimal recording conditions of the
speech data. One other important aspect would be the full alignment of the
speech resource, including spoken insertions and substitutions, as a means of
aligning small datasets.
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