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Abstract

The Voice Conversion Challenge 2016 is the first Voice Conver-
sion Challenge in which different voice conversion systems and
approaches using the same voice data were compared. This pa-
per describes the design of the evaluation, it presents the results
and statistical analyses of the results.

Index Terms: Voice Conversion Challenge, evaluation

1. Introduction

The Voice Conversion Challenge (VCC) 2016, one of the spe-
cial sessions at Interspeech 2016, deals with the well-known
task of speaker identity conversion, referred as Voice Conver-
sion (VC). The objective of the VCC is to compare various VC
techniques on identical training and evaluation speech data. The
full description of VCC 2016, the motivation, the database, the
rules, the participants and main findings are presented in [1]. In
the current paper, we describe the listening test design in more
detail, we present the results of the listening test and the subse-
quent statistical analyses.

2. Evaluation

Voice converted voices were evaluated in terms of naturalness
and similarity. The questions we addressed were:

1. How natural does the voice converted voice sound?

2. How similar does the voice converted voice sound com-
pared to the target speaker and to the source speaker?

2.1. Voice conversion data

Data from five source and five target speakers were provided to
the 17 participants (details in [1]) who each created 25 voice
converted (VC) voices. In addition to this, there was a baseline
system created at CSTR, i.e., 25 x 18 systems = 450 voices. In-
stead of evaluating all 450 VC voices, we decided to reduce the
number of source-target (ST) pairs from 25 to 16. One source
female speaker was removed as her recordings sounded Lom-
bardized and one of the male target voices was removed be-
cause he had a significantly slower speaking rate than the other
male speakers. Table 1 shows the resulting source-target pairs
for each gender condition.

Table 1: Source (S) - target (T) pairs per gender condition.
M-M F-F M-F F-M
SM1-TM2 | SFI1-TF1 | SM1 -TF1 | SF1-TM2
SM2-TM1 | SF2-TF2 | SM2-TF2 | SF2-TMI1

SM1-TM1 | SF1-TF2 | SM1-TF2 | SF1-TM1
SM2-TM2 | SF2-TF1 | SM2-TF1 | SF2-TM2

2.2. Naturalness

The Blizzard evaluation [2, 3] was taken as inspiration for the
design of the VCC Challenge. However, note that the current
evaluation is considerably more complicated than Blizzard as
not only are there 18 different participants/systems, they each
provide voices for 25 source-target (ST) pairs. In designing the
naturalness evaluation, we had to make a number of decisions:
1) What type of test? and ii) How many voices? One of the
main constraints we had to consider was the number of samples
a listener could judge in an hour.

In line with most previous work in the field, we decided to
use MOS tests for naturalness (e.g, [4, 5, 6, 7, 8, 9]). Despite the
shortcomings of MOS, we are not aware of any other evaluation
technique that can be used to compare 18 different voices. The
scale ranged from (1) totally unnatural to (5) completely natural.
The subjects were instructed that the score should reflect their
opinion of how natural or unnatural the sentence sounded.

If a listener were to judge all voices (18 participants * 16 ST
pairs = 288, + 4 source + 4 target = 296 stimuli) it would take
roughly 50 minutes. From experience, we know that listeners
judge about 6 sentences per minute. However, as we wanted
a single listener to judge both the naturalness and similarity of
VC voices this would take too long. We decided against an al-
ternative in which listeners would come in for multiple sessions
because of the risk of listeners dropping out between tests.

Instead of asking each listener to judge all ST pairs we con-
sidered reducing the MOS test to contain one single ST pair.
In terms of time this would be an excellent solution. However,
each listener would then only encounter one gender condition
and listeners needed to encounter the full range of gender con-
ditions as ratings are context-sensitive, i.e., the other voices in
a set influence the judgement of each sample [10]. Therefore,
we came up with an intermediate solution in which each lis-
tener hears eight source-target (ST) pairs, two from each gen-
der condition, to make the two sets as comparable as possible.
Two versions of the experiment were made: Set 1 contains the
top half of Table 1, above the dashed line, and Set 2 the bot-
tom half. Each set was listened to by 100 subjects, which took
roughly 25 minutes. The order of stimuli was random for each
listener, with each sentence selected at random with replace-
ment from the pool of 30 test sentences. (Although there were
54 sentences for each target speaker, sentences longer than 5 s
or shorter than 2 s were removed for the listening tests.)

2.3. Similarity

Measuring speaker similarity in a meaningful way is obviously
a key aspect of the evaluation of any type of voice conversion.
Using mean opinion scores to evaluate similarity, although a
widely-used technique, is not without problems: judging how
similar voices are on a scale from 1 to 5 may not be all that



meaningful. Judging the similarity of one speaker compared to
another speaker is a rather unusual task, it is not an element
of a person’s regular, everyday speech perception. Recognising
speakers, however, is something we do all the time. Therefore,
we felt the same/different paradigm, which arguably is measur-
ing something more akin to speaker recognition, would be more
appropriate for similarity judging. (See [11, 12, 13, 14, 15] for
other studies that use the same/different paradigm).

Listeners were given pairs of stimuli and given the follow-
ing overall instructions: “Do you think these two samples could
have been produced by the same speaker? Some of the samples
may sound somewhat degraded/distorted. Please try to listen
beyond the distortion and concentrate on identifying the voice.
Are the two voices the same or different? You have the option
to indicate how sure you are of your decision.” The scale for
judging was: “Same: absolutely sure”, “Same: not sure”, “Dif-
ferent: not sure” and “Different: absolutely sure”.

Not only were VC stimuli compared to the target speaker
but also to the source speaker. Table 2 shows the trials and
number of occurrences in one ST pair test set. The final column
gives the “correct” answer. As the objective in voice conversion
is to sound like the target the T-VC trials should be classed as
“same” and the S-VC trials as “diff”. Strictly speaking there
is no real correct answer. Same/different trials were roughly
balanced. Each listener was given three ST pairs to judge, one
within-gender, one cross-gender and one at random ensuing all
ST pairs were covered across listeners. As before the sentences
were selected at random (never the same sentence within a trial)
from the pool of 30 sentences with replacement and the order
of the trials was random.

Table 2: Stimuli for each ST pair for similarity judgement.
#

trials answer

S-S same 1

T-T same 1

S-T diff 1

S-VC1,S-VC2,..,S-VCI8 “diff” 18

T-VC1, T-VC2,.., T-VCI8 | “same” | 18
39

2.4. Listeners

Experiments were carried out using a web interface. The lis-
teners were seated in sound isolated booths and listened to the
samples using Beyerdynamic DT 770 PRO headphones. Listen-
ers were remunerated for their time and effort.

After completing the experiment, listeners filled out a short
questionnaire with questions regarding gender, native language,
accent and whether they were speech experts or not. 200 (52
male and 148 female) subjects took part in the experiment. Ta-
ble 3 gives a breakdown of the age categories and (self-reported)
accents of subjects.

Table 3: Age and accent of subjects.

Age # | Accent #
18-20 39 | British 124
20-29 | 146 | North American 45
30-39 10 | other 21
40-59 5 | not given 10

3. Results

3.1. Naturalness

Figure 1 shows a boxplot of MOS values over all ST pairs for
each system, ordered by the mean (red dots). The letters A ...

Q indicate the 17 participants [1] and S = source, T = target
and B_ = baseline. Figure 2 shows the separate results for Set 1
and Set 2. A one-way ANOVA revealed that the overall means
for the two sets (different materials, and different listeners) are
significantly different [F'(1,31998) = 29.59,p < 107%].
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Figure 1: Naturalness MOS for all ST pairs and all systems,
ordered by mean (red dots). Black lines indicate medians.
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Figure 2: Naturalness MOS for Sets 1 & 2 ST pairs, all systems.
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Figure 3: Groupings of systems that do not differ significantly
from each other in naturalness, for all ST pairs, Sets 1 & 2.

Wilcoxon signed-rank tests with Bonferroni correction
(a = 0.01) confirm that all systems are rated significantly less



natural than the source (S) and target (T) speakers. Furthermore,
most pairwise comparisons are significantly different from each
other. However, in this case we are also interested in which
systems are not significantly different from each other. This is
roughly illustrated in Figures 1 & 2 by the colour of the boxes
and graphically in Figure 3 by grouping the systems with the
same naturalness scores together. This illustrates that although
the ANOVA indicates a significant difference between sets 1
and 2, the rankings of the systems do not change much across
the sets.
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Figure 4: Overall naturalness MOS per gender condition.
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Figure 5: Naturalness MOS per gender condition all systems.
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Figure 6: Groupings of systems that do not differ significantly
from each other in naturalness, per gender condition.

In addition to the overall results, the results for each of the
gender conditions is of interest. Figure 4 shows the overall
MOS per gender condition, all systems combined. Figure 5
shows the results per system. Finally, Figure 6 illustrates the
significance groupings of systems. A one-way ANOVA with
gender condition as the within-group factor shows there is a sig-
nificant effect of gender condition [F'(3,31996) = 181.3,p <
107'%]. Post-hoc Tukey tests show, as expected, that the natu-

ralness ratings follow the order of the means in Figure 4. Intra-
gender VC scores significantly higher than cross-gender VC, in
terms of naturalness.

3.2. Similarity

The similarity scores are represented in Figure 7 by stacked
barplots with the listeners’ confidence included. The top barplot
shows VC compared to the target and the bottom shows VC
compared to the source speaker. Figure 8 gives the same results
with the degree of confidence omitted. Barnard’s exact test,
with Bonferroni correction was used to calculate significance
between systems on the binary same/different data, illustrated
in Figure 9. Finally, results per gender condition are presented
in Figure 10.
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Figure 7: Similarity (with listener confidence) to target speaker
(top) and to source speaker (bottom) over all ST pairs.
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Figure 8: Similarity same/different to target speaker (top) and
to source speaker (bottom) over all ST pairs.
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Figure 9: Groupings of systems that do not differ significantly
from each other in terms of similarity to target.
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Figure 10: Similarity (with listener confidence) to target speaker, per gender condition.

Figure 8 shows that — viewing the binary decision — speaker
similarity of the top systems is around 70%, which is quite high.
However, the ‘not sure’ portions of even the top systems is high
(Figure 7). For example, for system “J”, the proportion same
is 72.5% of this 36.5% is ‘sure’ and 36% is ‘not sure’. For all
other systems, the proportion of ‘not sure’ is larger than ‘sure’.

A one-way ANOVA on the similarity data with gender con-
dition as the within-group factor again shows a significant effect
of gender condition [F(3,11996) = 41.21,p < 107 '¢]. The
post-hoc Tukey HSD test shows that FM and MM do not dif-
fer significantly from each other nor do FF and MF. It further
reveals that, FF and MF score significantly higher in terms of
similarity to the target than MM and FM. This suggests that
conversion to the female target voices is more successful.

4. Discussion

The VCC results indicate that there is still a lot of work to be
done in voice conversion, it is not a solved problem. Achieving
both high levels of naturalness and a high degree of similarity to
a target speaker —within one VC system— remains a formidable
task, succinctly summarised in Figure 11. The fact that so much
of the similarity score is made up of listeners not being sure
whether or not the samples were from the same speaker or not
is an indication of the difficulty of the task, both for listeners
and for the VC community. That said, the results for female to
female conversion show that it is possible to achieve very high
levels of similarity 80%, with certainty above 50%.

Carrying out an evaluation of this size is a complex task
and compromises were inevitable. For example, distributing
the ST pairs across two sets for naturalness rating. Although
we attempted to make the sets as comparable as possible —by
balancing across gender conditions— the ratings of the systems
are still context sensitive and whether or not they should be
compared is a disputable point [10]. For similarity evaluation,
multi-dimensional scaling (MDS) of the systems compared to
both target and source would have been compelling, however,
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Figure 11: Overall results for naturalness versus similarity to
target speaker for all ST pairs.

the number of trials needed to place an ST pair in such a space
was prohibitive. In this case, measuring similarity for all 16 ST
pairs took priority over a more exhaustive evaluation of only
a few ST pairs. Future work will include a full MDS analysis
for a select set of ST pairs. Finally, our listener population is
disproportionally female and British-English (see Table 3). It
cannot be ruled out that listener gender has had an effect on the
results, which could be an explanation for the higher similarity
results for female target voices. Furthermore, British-English
listeners may be insensitive to American-English prosody thus
missing out on subtle speaker identity cues. Further investiga-
tion is needed to ascertain whether different types of listeners
do indeed rate similarity differently.
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