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Abstract

A broadcast news stream consists of a number of stories and

each story consists of several sentences. We capture this struc-

ture using a hierarchical model based on a word-level Recur-

rent Neural Network (RNN) sentence modeling layer and a

sentence-level bidirectional Long Short-Term Memory (LSTM)

topic modeling layer. First, the word-level RNN layer extracts a

vector embedding the sentence information from the given tran-

scribed lexical tokens of each sentence. These sentence embed-

ding vectors are fed into a bidirectional LSTM that models the

sentence and topic transitions. A topic posterior for each sen-

tence is estimated discriminatively and a Hidden Markov model

(HMM) follows to decode the story sequence and identify story

boundaries. Experiments on the topic detection and tracking

(TDT2) task indicate that the hierarchical RNN topic modeling

achieves the best story segmentation performance with a higher

F1-measure compared to conventional state-of-the-art methods.

We also compare variations of our model to infer the optimal

structure for the story segmentation task.

Index Terms: spoken language processing, recurrent neural

network, topic modeling, story segmentation

1. Introduction

The aim of story segmentation is to divide a sequential stream

of text or audio into stories or topics. It is useful for many sub-

sequent tasks such as summarization, topic detection, and in-

formation retrieval, and plays a crucial role for analyzing media

streams. In this paper we are concerned with the segmentation

of transcribed broadcast media based on a hierarchical approach

in which each story consists of several sentences in a coherent

order, and each sentence consists of words which are relevant to

the story.

Story segmentation has been studied for decades, through

various media types such as text [1, 2, 3, 4, 5, 6, 7], audio [8, 9],

and video [10, 11, 12]. In the pioneering TextTiling approach

[2], adjacent sentence blocks were compared using a similar-

ity measure based on bag-of-words (BOW) or term frequency

- inverted document frequency (tf-idf) features. Later studies

indicated that globally optimized segmentation methods – such

as dynamic programming (DP) and the hidden Markov model

(HMM) [3, 4, 13] – can improve the performance, and usage

of probabilistic topic modeling such as probabilistic latent se-

mantic analysis (pLSA) [14, 7] and latent Dirichlet allocation

(LDA) [15, 16] can further increase the accuracy. Analogous

to approaches used in automatic speech recognition (ASR),

deep neural networks have been combined with HMMs (DNN-

HMM) and successfully applied to the story segmentation with

significant improvement in performance [17]. DNNs have been

also applied to similar applications including dialogue segmen-

tation [18] and sentence boundary detection or punctuation es-

timation [19, 20].

Recurrent neural networks (RNNs) have extended the state

of the art for general language modeling and topic/document

modeling. Following the feed-forward neural prediction lan-

guage model [21], Mikolov et. al. proposed using an RNN

for language modelling, thus removing the limitation of finite

context for predicting next words [22]. Language modelling us-

ing long short-term memory (LSTM) RNNs was proposed [23],

and currently represents the state-of-the-art in language mod-

elling [24]. To incorporate additional context, the paragraph

embedding vector was introduced as an auxiliary input to an

RNN language model [25, 26], and was found to improve the

quality of modeling. This model factorizes into a topic factor

and a word distribution for the topic, with the paragraph vector

being trained to represent the topic. Hierarchical models have

also been proposed for topic/document modeling [27, 28], and

Lin et. al. extended the paragraph vector language model using

a hierarchical RNN [29]. In this work a sentence-level RNN

was used to convey an unlimited history of sentences, and by

using this history vector in a similar way to a paragraph vector,

each word is predicted with a word-level RNN. In an applica-

tion to information retrieval, Palangi et. al. proposed an LSTM

model with an output vector extracted as sentence embedding

[30]. They demonstrated that specifically trained output vectors

are better representations than paragraph vectors.

In this paper, we propose a hierarchical RNN for story seg-

mentation. Each sentence is represented as a sentence em-

bedding vector with a first word-level RNN layer, and a sec-

ond sentence-level bidirectional LSTM layer models the overall

story transition based on the sequence of sentence embeddings.

Finally a feed-forward neural network layer predicts topic label

of the input sentence, and an HMM decodes the sequence of

topics and detects story boundaries. Our model is trained and

evaluated on topic detection and tracking (TDT2) transcribed

broadcast corpus, and compared with the state-of-the-art DNN-

HMM story segmentation method [17].

2. Hierarchical Recurrent Neural Network

2.1. Overview

Broadcast news has a hierarchical character, with a top level

sequence of stories, in which each story consists of multiple

sentences, and each sentence consists of words which are rel-

evant to the story. To capture this structure, we propose a hi-

erarchical RNN model combining a sentence embedding RNN

and a bidirectional LSTM story transition model. In the first

layer, a word-level sentence embedding RNN, independently

concentrates each sentence into a sentence embedding vector.

This is followed by a second layer which models the transi-

tion of multiple stories within a chunk, for instance a program

unit, using a sentence-level bidirectional RNN which consid-

ers contexts of both preceding and following sentences. The fi-

nal feed-forward neural network layer estimates topic posterior
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Figure 1: Hierarchical recurrent neural network for story seg-

mentation.

probabilities which may be used in an HMM to decode the topic

sequence, thus obtaining the story boundaries. The hierarchical

RNN architecture is depicted in Figure 1.

We assume that transcriptions and sentence boundaries are

available, similar to [17], as many studies regarding sentence

segmentation and punctuation estimation have been done, such

as [19, 20]. Given a sequence of sentences s = [s1, ..., sJ ] and

the parameter set θ, we optimize to find the most probable topic

label sequence ẑ, considering all possible sequences of topic

labels z = [z1, ..., zJ ].

ẑ = argmax
z

p(z|s; θ) (1)

Analogous to the DNN-HMM acoustic model, this opti-

mization problem can be solved with a combination of topic

posterior prediction, p(zj |sj), and transition probability mod-

eling, p(z), by applying Bayes’ rule [31]:

ẑ = argmax
z

p(s|z; θ)p(z)/p(s)

= argmax
z

p(s|z; θ)p(z) (2)

p(sj |zj) =
p(zj |sj)

p(zj)
p(sj). (3)

p(s) and p(sj) do not depend to z and can be ignored. p(zj) is

considered as prior probability, and the topic posterior p(zj |sj)
can be estimated using hierarchical RNN which we propose.

The prior probability of the sequence p(z) is modelled as the

HMM transition probabilities.

2.2. Relation between Other Work

Document embeddings using paragraph vectors [25, 26] are

used to augment the input to an RNN. In the case of unknown

topics, the paragraph vectors must be re-trained. An alterna-

tive, reverse, approach embeds sentence information into the

output vector of RNN which can be straightforwardly estimated

by training discriminatively [30].

The paragraph vector approach has been extended into a

hierarchical RNN, combining sentence-level and word-level

RNNs [29]. In this approach, the sentence-level RNN can con-

vey longer history while the paragraph vector is shared only

within a topic or a paragraph. Our method can be considered

as the reverse form of the hierarchical RNN document model,

since we train it specifically for topic discrimination. This re-

lationship is thus similar to that between the paragraph vector

and the sentence embedding described above. The sentence-

level RNN and word-level RNN are switched from the model in

[29] for story segmentation; our sentence-level RNN uses his-

tory vector of word-level RNNs as sentence embedding vectors.

2.3. Sentence Embedding with RNN

The first layer of our model is a word-level RNN which esti-

mates the sentence embedding vector similarly to [30]. The em-

bedding vector concentrates information of the input sentence

and represents the topic of given sentence independently. For

the j-th sentence, the RNN updates the history vector hj,t with

the given t-th word embedding vector xj,t within the sentence:

hj,t = tanh(Uhj,t−1 + V xj,t) (4)

where U and V are trainable matrices. The input embedding

vector xj,t is also to be trained. Using these history vectors, the

sentence embedding vector ej is calculated as

ej =

Tj∑

t=1

λj,thj,t (5)

where Tj is the total number of words in the sentence j. The

weight parameters λj,t are predefined, and they can be all set to

0 except for last word which is set to 1 to filter out only the last

history vector (cf. [30]). They can be also set equally to 1/Tj

so that the gradients spread to every time step in order to avoid

the problem of vanishing or exploding gradients.

2.4. Story Transition Modeling with Bidirectional LSTM

Each story consists of multiple sentences with a coherent or-

der. There are sometimes implicit beginning and ending notes

particularly at the story changes. In order to capture the transi-

tion of sentences and stories, we adopt bidirectional LSTM, as

the second layer, which has been successfully used in multiple

applications such as acoustic modeling and sequence tagging

[32, 33, 34]. The gated architecture of an LSTM make it possi-

ble to deal with sudden changes in the sequence, and it is rea-

sonable to utilize LSTM for story segmentation because stories

tend to change suddenly, particularly in news broadcasts. In ad-

dition, because a typical broadcast program unit contains hun-

dreds of sentences, it is rational to adopt the LSTM which can

cope with long sequence data without the vanishing/exploding

gradient problem. The topic of a sentence can be represent by

taking account of both side contexts of the sentence. Hence

bidirectional approach is used similar to [33].

Each directional LSTM updates its parameters, for a given

sentence vector ej , and the output vector is fed into the feed-

forward neural network layer to estimate its topic label. We

utilize LSTM with forget gate [35], and without peephole con-



nections [36]. The output vector of forward LSTM hF,j is com-

puted as following.

iF,j = σ(Weiej +WhihF,j−1 + bi)

fF,j = σ(Wefej +WhfhF,j−1 + bf )

cF,j = fj ⊙ cF,j−1 + iF,j ⊙ tanh(Wecej +WhchF,j−1 + bc)

oF,j = σ(Weoej +WhohF,j−1 + bo)

hF,j = oF,j ⊙ tanh(cF,j) (6)

where σ is sigmoid function, and for the backward, parameters

are calculated in the same manner. We share all the parameters

W∗ and b∗ among forward and backward to reduce computa-

tional complexity.

2.5. Topic Posterior Prediction and HMM Decoding

The final layer computes topic posteriors sentence by sentence

using a feed-forward neural network. As we want to estimate

boundaries, the estimation can not rely too much on the context,

otherwise the boundaries can be blurred. Therefore, in addition

to the use of context information of LSTM, the sentence embed-

ding vector ej is used directly this layer. Let the output vectors

of both forward and backward LSTM be hF,j and hB,j , then

the posterior p(zj |sj) is calculated as following,

yj = σ(WFhF,j +WBhB,j +Wrej + by) (7)

p(zj |sj) = g(Wpyj + bp) (8)

where g represent softmax function, and matrices W∗ and bias

vectors b∗ are trainable.

As studies using LSTM indicate that an additional statisti-

cal model helps to improve sequential estimation [33, 34], we

utilize an HMM to decode the topic sequence similar to [17].

In order to execute supervised training, the topic labels have

to be given. Generally, it is easier to obtain only the boundaries

of stories than the topic labels themselves. Therefore, in this

paper, the labels are predefined by unsupervised clustering us-

ing CLUTO [37] similarly to [17]. Based on tf-idf represen-

tation, topic segments are clustered by minimizing the inter-

cluster similarity and maximizing the intra-cluster similarity,

then all sentences within the segments are labeled according to

the clusters.

2.6. Training Procedure

The training is done jointly by minimizing cross-entropy be-

tween the target probabilities and the output posterior p(zj |sj)
using gradient descent. The target probabilities are provided ac-

cording to predefined cluster labels. In order to generalize the

training, the broadcast program units are broken into story seg-

ments, shuffled, and concatenated again into average program

unit size. In that manner we create as many possible combina-

tion of stories as possible synthetically. The word-level RNNs

are duplicated by the number of sentences in a program unit

and connected in parallel to a sentence-level LSTM. The pa-

rameters are initialized with random values ranging from −0.1
to 0.1 except bias vectors, b∗, which are set to 0, and updated

for every pseudo program unit. The gradients for first word-

level RNN layer are clipped if their norm exceeds 0.5 to avoid

the exploding gradients problem [38]. The learning rate α is set

to 1 at the beginning and changed to α/2 if the loss for valida-

tion set increases. The training process is terminated after about

30 epochs.

Table 1: F1-measure with different number of clusters and a

comparison with the other methods

Cluster 50 100 150 170 200

TextTiling [2] 0.484

DNN-HMM [17] 0.718 0.729 0.741 0.741 0.732

Hierarchical RNN 0.743 0.739 0.747 0.744 0.728

3. Experiments

3.1. Experimental Setup

We evaluated the hierarchical RNN on the Topic Detection and

Tracking (TDT2) task [39]. We divided the data into training,

validation, and test sets, 1607, 239, and 486 programs each.

All words in the data were preprocessed by the Porter stemmer

and stop words were removed. The total vocabulary size was

103,704.

We trained our model as described in 2.6. The hidden

units of word-level RNN, sentence-level bidirectional LSTM

and feed-forward neural network were all set to 256 nodes, and

word embedding input vector xj,t was also trained with 256 di-

mensions. For each HMM state, the transition probability of

staying same state was set to 0.8, and of switching to other

state was set to the evenly divided value of remaining 0.2, as

in [40, 17]. Story boundaries were detected as change points of

the topic sequence decoded by the HMM, and evaluated using

the F1-measure1 comparing with the segment boundary annota-

tion.

3.2. Story Segmentation Result

We tested our method with various numbers of clusters, from 50

to 200. We also compared with the classical approach, TextTil-

ing [2], and the state-of-the-art method, DNN-HMM story seg-

mentation [17], using same data set. For TextTiling, the blocks

were constructed as 3 sentences for each to compare the term

frequency, and this procedure did not affect the number of clus-

ters. For the DNN-HMM, we used a context size of 60 to cre-

ate BOW input features and constructed a 2-layered DNN with

256 nodes for each, similarly to [17]. The results are shown

in Table 1. Overall, our method was consistently beyond the

performance of DNN-HMM except for 200 clusters, and the

difference between the best scores of each was statistically sig-

nificant at p < 0.05 [41]. According to the experiment in [17],

the DNN-HMM approach scored the best when the number of

cluster was 170. In our replication, this was indeed the highest

among the variations, however the difference was less signifi-

cant than reported in [17], perhaps because the data set was not

exactly the same. On the other hand, our hierarchical RNN ap-

proach had a peak at 150 clusters. The results show that our

proposed model is able to represent the hierarchical topic struc-

ture effectively.

3.3. Comparison of Model Variations

We also investigated some variations of the hierarchical RNN

approach. Since the RNN and LSTM are replaceable, we first

evaluated the sentence embedding faculty of first word-level

layer using both RNN and LSTM. Only the first RNN layer

was trained, by directly calculating softmax g as following, and

1The F1-measure was computed with a tolerance window of 50
words according to the TDT2 standard [39].



Table 2: Comparison of sentence embedding faculty with 150

clusters (ratios of correctly classified sentences)

λj,t average last

RNN 39.60% 35.76%

LSTM 41.44% 42.29%

Table 3: Comparison of variations of hierarchical RNN model

with 150 clusters. (Bypass refers the direct usage of sentence

embedding to the last feed-forward neural network discribed in

section 2.5)

Model F1-measure

RNN-BiRNN 0.706

RNN-BiLSTM 0.729

RNN-BiLSTM-NN 0.740

RNN-BiLSTM-NN+Bypass 0.747

ratios of sentences which were correctly classified were evalu-

ated.

p(zj |sj) = g(W ′

pej + b′p). (9)

The dimensionality of embedding vector was fixed to 256. We

also compared the variations of λj,t in Equation (5), between

taking “average”, where all λj,t are 1/Tj , and filtering “last”,

where all λj,T set to 0 except last one λj,Tj
= 1. The result

with 150 clusters was shown in Table 2 where it can be seen

that taking average for calculating sentence embeddings ej had

better convergence than taking last history vector for RNN. On

the other hand LSTMs were trained robustly with the variations

of λj,t. Also, it indicated that although the LSTM could bet-

ter represent sentences, it was not significant considering that

LSTM has greater number of parameters than RNN. Therefore

it was reasonable to use an RNN for the first sentence embed-

ding layer.

Next we explored variations of our model by changing the

second bidirectional LSTM layer and the last feed-forward neu-

ral network layer in the case of 150 clusters. The bidirectional

LSTM layer can be easily replaced with a bidirectional RNN

and we compared these approaches without using the final feed-

forward layer (RNN-BiLSTM and RNN-BiRNN). We also em-

ployed the final feed-forward last neural network layer and in-

vestigated the effectiveness of bypassing the sentence embed-

ding vector ej to the last neural network (RNN-BiLSTM-NN

and RNN-BiLSTM-NN+Bypass). The results are shown in Ta-

ble 3 and indicate that, for second bidirectional layer, LSTM

exceeds the performance of RNN. It also showed that the last

neural network seemed to play the important role for estimat-

ing topic posterior and bypassing sentence embedding vector

helped to improve the performance. We show posteriors of one

validation sample for 50 clusters in Figure 2. While DNN pos-

teriors (Figure 2-(b)) had several confusions of the topic estima-

tion, our model without bypass (Figure 2-(c)) partly improved,

and our model with bypass (Figure 2-(d)) further reduced the

confusions.

4. Conclusions and Future Work

This paper proposes a hierarchical RNN approach for story seg-

mentation task to capture the hierarchical character of broad-

cast news recordings. Our model uses the first RNN layer

to extract a vector embedding sentence information, and uses

the second layer to model the story level using a bidirectional

(a) Topic Label (b) DNN Posterior

(c) RNN-BiLSTM-NN Posterior (d) RNN-BiLSTM-NN+Bypass Posterior
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Figure 2: Comparison of posteriors with 50 clusters. Vertical

lines are story segment boundaries.

LSTM based on the sentence embedding vector. The final neu-

ral network layer estimates the topic label according to the sen-

tence embedding vector and both sides of context, followed by

an HMM which decodes the topic sequence and obtains the

boundaries. Experimentally, we have found that our hierarchi-

cal model improves on the state-of-the-art for topic segmenta-

tion in the TDT2 corpus. In addition, we compared variations

of our model to explore the influence of different components

in the model structure.

For future work, we are interested in combining acoustic

information, since RNN has a natural character to deal with

temporal modeling. It is also possible to explore using an at-

tention mechanism to combine the history vectors to produce

the sentence embedding vector.
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