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Multitask learning of context-dependent targets in
deep neural network acoustic models

Peter Bell, Member, IEEE, Pawel Swietojanski, Member, IEEE, and Steve Renals, Fellow, IEEE

Abstract—This paper investigates the use of multitask learn-
ing to improve context-dependent deep neural network (DNN)
acoustic models. The use of hybrid DNN systems with clustered
triphone targets is now standard in automatic speech recognition.
However, we suggest that using a single set of DNN targets in this
manner may not be the most effective choice, since the targets
are the result of a somewhat arbitrary clustering process that
may not be optimal for discrimination. We propose to remedy
this problem through the addition of secondary tasks predicting
alternative content-dependent or context-independent targets.
We present a comprehensive set of experiments on a lecture
recognition task showing that DNNs trained through multitask
learning in this manner give consistently improved performance
compared to standard hybrid DNNs. The technique is evaluated
across a range of data and output sizes. Improvements are seen
when training uses the cross entropy criterion and also when
sequence training is applied.

Index Terms—automatic speech recognition, multitask learn-
ing, context modelling

I. INTRODUCTION

THE ability to effectively model phonemes in context is
critical to the good performance of modern automatic

speech recognition (ASR) systems for continuous speech. The
hidden Markov model (HMM) based approach that remains the
dominant paradigm for ASR explicitly makes the assumption
that the acoustic observation for each frame is dependent only
on the current hidden state, implying that adjacent observations
are conditionally independent, given the hidden state sequence.
This assumption is of fundamental importance for efficient
decoder design.

This model has two obvious weaknesses. First, the frame-
wise conditional independence assumption is clearly incorrect.
We term this the acoustic context problem; it can be partly ad-
dressed by appending first and higher order temporal derivative
features to the acoustic feature vectors, by various forms of
recurrent structures, or by the use of wide-context windows.
This assumption also necessitates the use of an scaling factor
for the acoustic probabilities [1].

The second weakness, which can be termed the phonetic
context problem is that, due to the physical constraints of
the human articulatory system, the realisation of a phoneme
is highly influenced by the adjacent phonemes. This effect,
known as co-articulation, is particularly prevalent in faster,
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more natural speech. Within the HMM framework, this ef-
fect is primarily modelled by the use of context-dependent
(CD) phone models [2], [3], [4] as the basis for acoustic
modelling, contrasting with the original HMM systems which
used context-independent (CI) monophone models [5], [6].
In essence, this allows the decoder to dynamically adapt the
probability distribution for each monophone according to its
context within the hypothesised phone sequence. Unfortu-
nately, modelling each phone with both left and right context –
known as a triphone – results in a very large number of states
to model (for example, up to 3× 483 ≈ 300, 000 in a typical
English system using 3-state HMMs). Furthermore, due to the
uneven distribution phones in speech, many of these triphones
will be unseen in training data. An important innovation in
HMM-based ASR was the introduction of phonetic decision
trees to cluster the CD state units [4]. These tied states (also
known as senones [7]) were modelled using Gaussian mixture
models (GMMs). By tying triphones in this way, data sparsity
issues are reduced, and at decoding time the decision tree
can be used to select a probability distribution for unseen
triphones. Tied-state modelling in HMM-GMM systems was
a contributing factor in their outperforming neural network
based approaches [8], [9] used at the time, and these CD-
HMM-GMM systems formed the foundation of state-of-the-art
ASR systems for the following fifteen years.

The use of deep neural network (DNN) acoustic mod-
els [10], [11] has led to significant improvements in the accu-
racy of speech recognition systems. DNN acoustic models are
typically trained to predict posterior probabilities over CD tied
states derived from clustering with a previously-trained GMM.
Outputs from these DNNs can be used directly in a standard
CD-HMM decoder, after scaling by a prior to convert the
posterior probabilities to pseudo-likelihoods [12]. This “hybrid
DNN” approach is now standard in modern systems, and
while GMM systems are still routinely used to obtain the CD
state clustering, other purely DNN-based methods may also be
used [13], [14]. Neural network models which take alternative
approaches to solve the acoustic context problem, such as
recurrent neural networks (RNNs) [15] and LSTMs [16], [17],
still generally use the same tied-state solution to the phonetic
context problem, although recent work [18] has used the CTC
loss function defined over CI states.

Context-dependent state-tying contrasts with earlier efforts
to incorporate context modelling in neural network systems,
where context information was incorporated by means of
a bias term in the hidden layer [19]. A more recent al-
ternative [20] factorises the left and right acoustic contexts
using multiple sets of articulatory-based equivalence classes,
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Fig. 1. A theoretical visualisation of the problems in modelling tied-state units with a DNN: in (a), two triphones ‘o’ and ‘x’ of the same monophone are
easily discriminated from triphone ’+’ of another monophone. In (b), however, the two triphones happen to be in different tied-state classes, and DNN is
forced to learn to discriminate between the two.

training DNNs for each scheme, and allowing probabilities
for each unique triphone to be synthesised by combining the
appropriate DNN probabilities using a regression model.

We suggest that the standard state-tying approach in DNN
acoustic model has significant deficiencies. When used to gen-
erate targets for generative models such as GMMs, modelling
CD units can be viewed as a more fine-grained partitioning
of the acoustic space to allow larger, more powerful models
compared to CI units, whilst the use of state-tying simply
balances the requirement for more precise modelling of con-
text with the need to ensure that there is adequate data for
reliable estimation of the GMM parameters for each state.
However, the situation is quite different for an inherently
discriminative model such as the DNN, where only the labels
of boundary cases determine the decision boundaries. This
leads to a problem: because the targets derived from the
clustering scheme are in a sense arbitrary, depending on the
heuristically-chosen number of leaves in the decision tree and
the question set used, two samples which the DNN is trained
to discriminate between under one clustering scheme could
be assigned the same label in a different scheme. The DNN is
effectively over-fitting to a poorly-defined labelling scheme.

A second problem, as noted in [19], is that the primary re-
quirement of the DNN is to discriminate between monophones,
with the left and right targets used as an adjustment to better
model the monophones in context. However, in the state-tying
scheme the costs of misclassification between senones of the
same monophone and senones of different monophones are
treated equally. This could conceivably result in the DNN
“wasting” parameters – attempting difficult discriminations
that may not be useful at test time – and could result in
lower layers learning poor-quality representations of the data.
A theoretical visualisation of this situation is illustrated in
Figure 1.

Motivated by these concerns, we propose to use multi-
task learning (MTL) as a technique to regularise the DNN,
preventing it from over-fitting to a single set of senone targets
and thus learning better hidden representations of the data.
This is achieved by forcing the network to learn additional

CI or CD labels as well as the conventional senone targets.
This paper extends our previous work [21], [22] and performs
further analysis of the findings. As a means of solving both
the above problems, we first consider using the prediction of
monophone states as a secondary task for a standard CD-
DNN. We investigate the effects of this technique when both
the quantity of training data and the number of senones is
varied. We also investigate the improvements in accuracy from
applying sequence training.

Second, we investigate the use of alternative CD secondary
tasks, attempting to verify the hypothesis that simply over-
fitting to a single set of targets is harmful. We also seek to
demonstrate that the improvements from the use of mono-
phones as a secondary task are not simply due to the lower
cardinality of the task. Finally, we perform experiments using
alternate implementations of MTL.

II. MULTITASK LEARNING

Multitask learning [23] expresses the general principle that
machine learning models designed to solve different problems
on the same data can beneficially share some common repre-
sentation.

In DNNs MTL may be implemented by creating a network
with shared hidden layers. In this context a task, A, is
effectively a mapping from a set of T training frames to a
set of labels, that is:

A : {t : 1 ≤ t ≤ T} 7→ {1, . . . , |A|}
t 7→ yAt (1)

where xt is the data, yAt its labelling under task A, and |A|
denotes the cardinality of the task. Then we can define the
objective for task A by the cross-entropy

FA(θ) =

T∑
t

log p(yAt |xt; θ) (2)

which is maximised with respect to parameters θ when learn-
ing task A.
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Fig. 2. An example multitask DNN architecture

When applying multi-task learning, we introduce an addi-
tional task B, which defines an alternative labelling on the
same set of T training frames. Simultaneous to optimising
FA(θ), we now additionally attempt to optimise FB(θ). It is
possible to extend this to multiple additional tasks, although
we typically consider a single additional task in this work.

In the multi-task experiments that we reported in this
paper, we use only the primary task at test time, denoted
as task A. The use of a single primary task contrasts with
related approaches in which multiple tasks are combined at
test time [24], or with situations where separate tasks are
useful in their own right – for example, multi-lingual systems,
where different tasks correspond to the phone sets of different
languages [25].

A. Multitask learning in deep neural networks

Consider a feed-forward network, with L hidden layers
{h(1), . . . ,h(L)}:

h
(`)
t = σ(W(`)h

(`−1)
t + b(`)) (3)

where σ is the sigmoid non-linearity. Given the activations in
the final hidden layer, the network produces separate outputs
for each task. For task A, these are given by

zAt = softmax(WAhL
t + bA) (4)

with weight WA and bias bA specific to this task (we
implicitly drop the layer-related index `). zAt is the vector of
posterior probabilities for the labels of task A. An example
network with two tasks is shown in Figure 2. All networks
used in this paper share all hidden layers, with only the output
layers being task-specific. However, it is easy to make some
of the hidden layers task dependent also.

When performing an update for task A, we obtain the
gradient of the cross-entropy criterion for task A, with respect
to all parameters θ:

∂FA(θ)

∂θ
=

∂

∂θ

∑
t

log p(yAt |xt; θ) =
∑
t

∂zAt (y
A
t )

∂θ
(5)

The derivatives are computed using the back-propagation
algorithm. The only zero-gradients are for the output-layer pa-
rameters of other tasks, ie. WB , bB . The sums are computed
over mini-batches.

An important consideration is how the primary and sec-
ondary task updates are interleaved. This could be done at the
minibatch level. If a weight λ is assigned to task A, then the
update for the minibatch is given by

∂

∂θ
[λFA(θ) + (1− λ)FB(θ)]

=
∑
t

[
λ
∂zAt (y

A
t )

∂θ
+ (1− λ)∂z

B
t (y

B
t )

∂θ

]
(6)

This method is computationally efficient, since when comput-
ing the gradients, the forward pass can be shared between
both tasks, up to output layer. However, we postulate that this
approach lacks efficiency from a learning perspective since one
task is typically strongly connected to the other, leading to a
risk that the model learns the correlation between outputs of
each task, rather than learning a representation that is effective
for both tasks independently. This motivates an alternative
implementation used in this work: we interleave updates to
optimise FA(θ) and FB(θ) at the minibatch level, but present
minibatches for the tasks randomly, so that the two updates
are not related in any way. We experimentally compare the
two methods in Section IV-F.

B. Explaining multitask learning

There are a number of possible explanations for the gains
obtained from multitask learning [23], which we investigate
experimentally in this paper. A shared representation be-
tween tasks is central to the multitask approach. To learn
a model with good generalisation capabilities, we seek a
low-dimensional hidden representation which is sufficient to
explain the labels of interest, whilst reducing noise in the
data [26]. The theory is that we should have a preference
for representations that are capable of explaining multiple
properties of data. Therefore, by providing additional label
information for each sample, a second task can enable a better
hidden representation to be learned.

However, in our proposed use of MTL, the secondary task
– whether it is simply the monophone label or a lower-
cardinality senone set – does not provide additional infor-
mation over the primary task labelling. If MTL is effective
here, it would suggest that alternative explanations should be
considered, for instance that the use of an additional task
reduces the variance in the error signals, simply by averaging
over more sample/label pairs. If a secondary task has a lower
cardinality – or lower entropy – than the primary task, then
it is similarly likely to be easier to learn, allowing reliable
convergence to a good hidden representation. This is similar to
the motivation for curriculum learning [27], where the entropy
of the task is gradually increased as learning progresses.
It leads to the notion of eavesdropping, whereby a hidden
representation may be hard to learn from task A but easier
from task B, so that in a multitask setting, A is able to
“eavesdrop” [28], [23] on the information provided by B.
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Specific to the modelling of triphones, as discussed in
Section I, it is possible that in attempting to bias the model
towards predicting a context-independent secondary task, it is
also learning a discrimination that is more useful to the test
time task. In this case, we might expect these gains to reduce
after the application of sequence training [29], [30], which
explicitly achieves this aim by optimising a criterion related to
the expected error over the complete utterance. Alternatively, it
could be that gains arise by reducing over-fitting to a single set
of senone targets which, although yielding a more fine-grained
division of the acoustic space, are essentially an arbitrary
product of the clustering process. We suggest that the use of
MTL result in a “goldilocks” scenario – a “just right” balance
of a monophone task that is well-defined but not informative
enough to guide to the model to a good hidden representation,
and a high-dimensional task that provides detail, but where the
labels, and hence the training signals, have a high degree of
statistical noise.

C. Related work

Multitask learning was first applied to speech recognition
in situations in which the primary task was monophone clas-
sification. In the context of robust speech recognition using a
hybrid RNN/HMM architecture, Parveen and Green [31] used
an MTL approach in which the secondary task was speech
enhancement. Stadermann et al [32] investigated a number
of secondary tasks: gender classification, broad phonetic class
recognition, and grapheme recognition, for clean speech recog-
nition again using a hybrid RNN/HMM system.

More recently Seltzer and Droppo [33] investigated an
approach in which DNNs trained for monophone recognition
on TIMIT were augmented with a variety of context-related
tasks. In contrast to the current work, however, no context
was modelled in the primary task, making the baseline model
relatively weak, with adding significant additional information
being added via the additional tasks.

Chen at al [34] employed MTL as a regulariser in ASR
by modelling triphones jointly with trigraphemes. Zhang and
Woodland [35] investigated the use of the lower-dimensional
monophone states as targets for disciminative pre-training, as
an initialisation for context-dependent DNNs. This can be
viewed as a form of curriculum learning.

We proposed a monophone classification secondary task
for CD phone modelling [21], showing that this approach
outperforms the monophone pre-training approach of Zhang
and Woodland. We also found that gains from using MTL
in this way continue to hold when used in combination with
curriculum learning – when monophone pre-training is used
to initialise the networks, prior to fine-tuning with MTL.
However, we did not find consistent gains from curriculum
learning when it was used in combination with MTL in this
manner.

Chen et al [36] reported similar gains from the use of MTL
with a monophone secondary task in a scenario with a very
large number of distinct triphone models. A similar approach
has been subsequently investigated by Siohan and Ryback [24]
who found that the use of alternative decision trees yielded

benefits in system combination settings, but did not provide
benefits from learning multiple sets of targets simultaneously
in a multitask setting, in contrast to the findings reported here.
This may be due to the relatively small number of tied states
(12,000) relative to the quantity of data (2,000hrs) used in [24].
This has been recently followed by the use of “meta-states”
comprising tuples of states from different decision trees [37].

III. EXPERIMENTAL SETUP

We carried out experiments on the English TED Talk
transcription task from the IWSLT evaluation [38], presenting
results on the dev2010, tst2010 and tst2011 test sets
defined by IWSLT1. Each set consists of 8–11 single-speaker
talks of around 10 minutes each. In most of our experiments
we combined these three sets into a single test set containing
27 talks, comprising approximately 5 hours of speech. In all
cases we used the manual speech/non-speech segmentations
supplied for the IWSLT evaluation.

Our full acoustic training set consisted of 813 TED talks
recorded prior to 2010, comprising 145 hours of speech seg-
ments in total. Transcriptions were obtained through a lightly
supervised alignment procedure [39]. A language model was
trained on transcribed TED talks, and the Europarl, News
Crawl and Gigaword corpora [40]. This experimental setup
is somewhat similar to the Kaldi TED-LIUM recipe2, but is
fully compliant with the rules for the IWSLT evaluation. Note
also that the recipe uses only the dev2010 and tst2010
test sets.

A. Baseline systems

Using the Kaldi toolkit, an initial GMM system was trained
on 13-dimensional MFCC features following a standard recipe,
which involves several iterations of training data realignment,
decision-tree building, and Gaussian mixing-up. The features
for the final system used ±4 frames of context, to which
linear discriminant analysis (LDA), a maximum likelihood
linear transform (MLLT), and a speaker-adaptive feature space
(constrained) maximum likelihood linear regression (FMLLR)
transforms were applied: a single FMLLR transform is esti-
mated for each TED talk. We refer to the resulting features as
FMLLR features. The baseline system trained on the full data
set had approximately 10,000 tied states with 16 Gaussians
per state.

Our DNN systems are trained on the FMLLR features
derived from the GMM system. We used a fixed DNN architec-
ture of 6 hidden layers with 2048 units per layer. The hidden
layers used logistic sigmoid non-linearities, with a softmax
function at the output layer which is discarded for decoding.
All DNN weights were initialised using generative RBM pre-
training [41], and fine-tuned with several epochs of cross-
entropy training, using the targets and frame alignments from
the GMM system. This training was performed on NVIDIA
GPUs using an in-house tool based on the Theano library [42].
Stochastic gradient decent was used with a minibatch size of

1http://iwslt.org
2http://kaldi-asr.org/
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256 samples. We selected a learning rate of 0.16 based on
experiments on the full data set, and reduced the learning rate
for successive epochs using the “newbob” schedule [43]. In all
cases, 10% of the talks were held out for use as a validation
set. DNN weights were exported for use in the Kaldi decoders.

When the DNNs are trained with MTL, we use an equal
weight for each task: for example, when there are two tasks,
we use λ = 0.5 in Equation 6. We have found that results
are not sensitive to the value of λ. In practice, since our
implementation presents tasks separately at the minibatch
level, this weighting is achieved by using a halved learning
rate, 0.08, for each task.

We also carried out experiments using sequence train-
ing [30] to optimise the sequential minimum Bayes risk
(sMBR) criterion. Lattices for all training utterances were
generated using the cross-entropy trained DNN, and two
iterations of sequence training were performed using a learning
rate of 10−5. We did not tune this recipe, but found that it gave
good results in practice.

At test time, a first-pass decoding with the GMM was
used to generate alignments on which to estimate an FMLLR
transform for each talk in the test set, following which the
required FMLLR features were obtained for use in decoding
with the DNNs. These features were fixed for all experiments.
Decoding was carried out using a trigram LM, pruned with en-
tropy 10−7. Unless otherwise stated, all results are given with
this LM, although in some cases we also rescore lattices with
an unpruned 4-gram LM to demonstrate the best recognition
accuracies.

B. Reduced training data setup

We performed extensive experiments to investigate the in-
teraction between the quantity of training data and the effect
of standard and multitask DNN training, as well as the effect
of varying the number of tied states. To investigate the effects
of varying the quantity of training data we defined 10%, 20%,
50% and 75% subsets of the full training data, corresponding
to the approximate proportion of DNN training data retained,
after removing 10% of the data to act as a validation data
set, fixed for all data conditions. Although the percentages of
data were calculated with respect to the accumulated length of
speech segments, data selection was carried out at the whole
talk level. Since there are many talks in the training set, and
all are of similar duration, there is little difference in practice.
The selection is carried out alphabetically by the name of the
talker, so is effectively random with respect to the acoustic
characteristics.

When investigating the effects of the quantity of training
data and number and configuration of tied state targets, we
aimed to control for the quality of alignments and input fea-
tures – in addition to keeping the experimental configuration
as simple as possible. Therefore we do not train GMMs from
scratch on each reduced quantity of training data. We instead
used the final full-data GMM system to derive the FMLLR
features for each speaker to be used as inputs to the DNN;
these are fixed for all experiments. Using state alignments
from the full-data GMM, we generate a new decision tree

TABLE I
BASELINE RESULTS ON THE TED LECTURE TASK FROM SYSTEMS

TRAINED ON THE FULL TRAINING DATA

System Test set mean
dev2010 tst2010 tst2011

ML GMM 21.9 20.6 17.4 20.3
+ 4gram 19.5 17.9 14.8 17.7
CE DNN 17.8 16.7 14.1 16.5
+ sequence 15.9 14.7 12.2 14.5
+ 4gram 13.4 12.0 10.0 12.0

based on occupancy statistics in the reduced data, fixing the
desired number of leaves. This guarantees that the state-tying
is appropriate for the smaller data set in terms of the number
of samples per state. However, we do not realign the data,
instead converting the original full-data alignments to use the
new decision tree via a deterministic mapping of the logical
triphones. This ensures that the quality of the targets used as
DNN targets is consistent across experiments. The DNNs were
initialised using RBM pre-training on the full data set.

Finally, when performing sequence training with the re-
duced training data, we used denominator lattices generated
by the full-data models. Only the word alternatives from these
lattices are retained, being used to generate a new lattice with
a matched set of tied states, allowing sequence training of the
reduced-data DNN. This avoids the significant computational
overhead of regenerating the lattices from scratch for every
possible decision tree and data quantity condition, while
yielding the expected improvements in performance.

IV. EXPERIMENTS

In Table I we present baseline results on the three test sets
from the TED lecture task using systems trained on the full
training set. All these systems use 8,000 tied states; alignments
for cross-entropy DNN training are obtained using the baseline
maximum-likelihood GMM. As expected, there are substantial
gains from sequence training of DNNs on this task. Results are
competitive with other state-of-the-art systems reported in the
literature [38]3. In further results, we give only WER averaged
over all test sets (this is weighted by the number of words in
each set) and do not rescore with the 4-gram LM.

We additionally investigated the effect of RBM pre-training
on the performance of DNNs trained with cross-entropy. On
the full training set, we found no significant difference in
WER. However, experiments on 50% of the full training
set, demonstrated improvements from pre-training. We opted
to use pre-training on the full data in all the following
experiments.

A. Varying quantities of data

Our first experiment investigates the use of monophone
targets as a secondary task for DNN training. Following the
standard Kaldi recipe, monophone units are dependent on the
position within the word (beginning/end/internal/singleton).
There are 186 such monophones in total. Figure 3 compares

3NB. Some of the systems reported at IWSLT were trained on additional
corpora
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Fig. 3. Comparing standard DNNs with the use of monophones as a secondary task, for different sizes of primary task: (a) 1000; (b) 4000; (c) 8000.

this multitask system with the standard single-task DNN, as
the quantity of training data is reduced to 10% of the full
quantity. Full figures are provided in Table II. The monophone
multitask systems consistently outperform the baseline over all
quantities of training data, and this effect holds over different
output sizes for the secondary task.

Interestingly, the relative gains from multitask learning here
vary little with the quantity of data, suggesting that the
secondary task is not simply acting as a smoothing prior, com-
pensating for data sparsity in the higher-dimensional primary
task. In other words, the effect of the secondary task is not
purely one of regularisation.

B. Varying the number of tied states

We also show the change in performance between single
and multitask systems with a varying number of tied states
for the primary task. Figure 4a shows this for models trained
on the entire data set; Figure 4b shows an average at each
size over all the subsets of the training data that we used. The
full set of results can again be found in Table II. Once again,
the results show remarkably consistent gains over the range of
output sizes, giving further support to the suggestion that the
effect is not merely one of smoothing the larger task.

As discussed in Section III-B, we controlled for the quality
of the frame-level alignments across all data sizes through
the use of a deterministic conversion between decision trees.
This avoids the situation where the DNNs are trained on more
noisy targets due to a poor quality alignment because of too
many GMM states or too little data. This may help explain the
consistency in WER reductions across the different conditions:
we hypothesise that multitask learning is correcting for the
inherent weakness of using a single set of clustered triphones
as a target.

C. Sequence training

As discussed in Section I, a possible explanation for the
benefits of using a context-independent secondary task is that
it encourages the network to learn a hidden representation that
gives greater benefits towards discrimination between phones,
rather than between triphones with the same central phone,
unlike the standard cross-entropy criterion which treats all
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Fig. 4. Comparing standard DNNs with the use of monophones as a secondary
task with varying number of tied states.

discriminations equally. Sequence training of DNNs may be
viewed as an alternative method for improving over cross-
entropy training, optimising an objective function more closely
related to word accuracy. Therefore, we one may conjecture



7

TABLE II
COMPARING SINGLE TASK AND MULTITASK OUTPUT WITH A RANGE OF TRAINING DATA AND TIED STATES

# states Quantity of training data (%)
10 20 50 75 100

Single MT Single MT Single MT Single MT Single MT
1000 26.5 25.0 23.4 22.3 22.0 19.5 20.7 20.2 20.1 19.4
2000 25.1 22.3 21.3 20.0 19.8 17.7 19.2 18.1 18.9 17.8
4000 22.7 21.1 20.2 19.0 18.1 17.5 17.7 17.1 17.2 16.7
6000 22.2 20.6 19.9 18.4 17.6 16.3 17.1 16.5 16.8 16.3
8000 21.5 20.3 19.2 18.4 17.4 17.0 16.6 16.1 16.5 15.8

that the gains from using a monophone secondary task will
diminish when sequence training is applied.

In this section, we present results following the application
of sMBR sequence training to the models from the previous
sections. The exact implementation of this was described in
Section III-B. The full set of results is in Table III. Figure 5a
compares systems with and without sequence training across
all different data sizes with a fixed 8,000 tied states. Figure 5b
compares single and multitask systems when sequence training
is applied, with a varying number of tied states. Finally,
Figure 5c illustrates the relative gains from sequence training
in both standard and multitask systems. There are substantial
gains from the use of sequence training – the relative gains
are larger at larger data sizes. Interestingly, however, the gains
are remarkably similar between the systems, so that use of the
secondary task continues to provide consistent benefits over
single task systems when used in combination with sequence
training. The relative gains from sequence training appear
slightly higher with the multitask systems at smaller data sizes,
and slightly lower with larger data. Taken together with the
results in the previous sections, this suggests that the observed
benefits may not necessarily be entirely explained by either
the small size of the secondary task or the fact that context-
independent targets are used.

D. Alternative secondary tasks

We conducted further experiments to determine the effect
of choosing alternate, larger secondary tasks. We found previ-
ously that factorising left and right phonetic context and using
each as secondary tasks can also be effective [22]. Motivated
somewhat by Xu et al [44], where multiple complementary
decision trees were used in system combination, we elected
to use differently-sized decision trees as the secondary tasks.
For each different training data size, we re-used each of
the decision trees with 1,000-6,000 leaves, generated for the
primary tasks in the previous experiments, but this time in the
role of a secondary task for a system with 8,000 tied states.
This is a simple way of varying the secondary task size. Again,
the tasks are deterministically related. It should be noted that
the use of these secondary tasks increases the computational
cost of training compared to the much smaller monophone
task, although there is no difference in decoding since the
secondary task is discarded as usual.

Figure 6 and Table IV compares the results with the
monophone multitask systems and the single task baseline.
The findings are interesting: we see that all secondary tasks
give significant gains over the baseline. However, there are no

TABLE IV
ALTERNATE SIZES OF SECONDARY TASKS

Secondary #states Quantity of training data (%)
10 20 50 75 100

Single task baseline 21.5 19.2 17.4 16.6 16.5
1000 20.9 18.4 17.0 16.3 16.1
2000 20.4 18.7 16.9 16.3 16.2
4000 20.5 18.3 16.9 16.1 15.9
6000 20.5 18.5 16.7 16.3 16.1
Monophone multitask 20.3 18.4 17.0 16.1 15.8

TABLE V
COMBINING MULTIPLE TASKS

Secondary #states Quantity of training data (%)
10 20 50 75 100

Single task baseline 21.5 19.2 17.4 16.6 16.5
Best task 20.4 18.3 16.7 16.1 15.9
Mean over tasks 20.6 18.5 16.9 16.3 16.1
Combining tasks 20.5 18.6 17.3 16.4 16.3

consistent conclusions about which size of secondary task is
best, although it seems generally to be the case that larger
secondary tasks have better performance.

It is clear from these results that the gains from using
alternative outputs in a multitask fashion do not simply derive
from the smaller size of task. However, the use of more
than one set of senone outputs is clearly beneficial; and
given that the monophone multitask system generally achieves
performance close to the best across most data conditions, we
suggest that these findings support the theory that a problem
with tied triphone state targets is their inherent arbitrariness –
explaining why improvements are seen with multiple sets of
targets as well as with the well-defined monophone task.

E. Combining multiple secondary tasks

Given that were able to obtain performance improvements
with each of the secondary tasks in the previous section,
we next performed experiments combining multiple secondary
tasks (i.e. using multiple output layers). There are several ways
in which this could be implemented; we decided to use a
method that would be most comparable to the systems with a
single additional task. Given that a single task is presented
at the minibatch level in our standard implementation, we
wished to avoid more presentations of each data point within
a single epoch, while ensuring that the primary task continues
to receive the same weighting. In our proposed scheme, tasks
are selected randomly for an update: the primary task receives
a probability of 50%, whilst the remaining 50% probability
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TABLE III
COMPARING SINGLE TASK AND MULTITASK DNNS FOLLOWING SMBR SEQUENCE TRAINING

# states Quantity of training data (%)
10 20 50 75 100

Single MT Single MT Single MT Single MT Single MT
1000 23.3 21.7 20.0 18.9 18.0 16.1 16.7 16.4 16.5 15.8
2000 23.2 19.8 18.5 17.7 16.7 15.2 16.2 15.4 15.8 15.2
4000 21.0 19.3 18.1 16.8 15.6 15.2 15.2 14.9 14.8 14.5
6000 20.8 19.1 18.3 16.6 15.3 14.4 15.1 14.6 14.6 14.4
8000 20.4 19.1 17.6 16.7 15.3 14.9 14.6 14.5 14.5 14.0

mass is shared evenly between secondary tasks. This means
that we continue to use a halved learning rate of 0.08 for all
tasks. An epoch ends when the primary task has presented the
complete set of data.

The results are shown in the final row of Table V, where
they are compared with best two-task systems from the pre-
vious section, and an average over all such systems. Whilst
continuing to outperform the single task baseline, the system
with multiple secondary tasks does not score better than the
best two-task system in any data condition, or than the average
score from the two-task systems. This seems to suggest that
a further increase in output diversity does not help. However,
it may be that, because less data is presented for each of the
secondary tasks, the output layers for these tasks are less well
estimated, potentially reducing the benefit of the error signals
from these tasks in learning a good shared representation. We
will investigate this further in future work.

F. Effects of task shuffling

Finally, we carried out experiments to investigate our in-
tuition that MTL is most effective for correlated tasks when
minibatches for each task are presented randomly, compared
to a more standard implementation where both tasks are opti-
mised jointly in every minibatch update. We trained variants of
the monophone multitask models where both tasks are updated
for the same data subset in successive minibatches. Owing to
our system design, we were not able to share the forward
pass for both tasks following Equation 5 exactly. Computing
updates for each task over two minibatches is computationally
less efficient, but we do not believe is otherwise materially
different. Note that in both implementations, the data is
randomised at the minibatch level.

The results are presented in Table VI. This confirms that
our standard implementation with shuffled tasks is indeed
consistently more effective than the alternative. Averaged
over all data conditions, the shuffled implementation yields
almost double the WER reduction compared to the other
implementation.

G. Final results

Table VII present final results for the single best multitask
system on the TED lecture task separated by test set. These
systems use the full set of training data and have 8,000
states. Even in this largest data condition, and with the use
of sequence training and a larger LM, relative gains of around
2.5% are observed.

TABLE VI
COMPARING IMPLEMENTATIONS OF MULTITASK LEARNING (SYSTEMS

WITH 8000 STATES)

System Quantity of training data (%) mean
10 20 50 75 100

Single task baseline 21.5 19.2 17.4 16.6 16.5 18.2
Joint task update 20.8 18.5 17.0 16.4 16.4 17.8
Shuffled task update 20.3 18.4 17.0 16.1 15.8 17.5

TABLE VII
FINAL RESULTS ON THE TED LECTURE TASK

System Test set mean
dev2010 tst2010 tst2011

Single task system
CE DNN 17.8 16.7 14.1 16.5
+ sequence 15.9 14.7 12.2 14.5
+ 4gram 13.4 12.0 10.0 12.0

Monophone multitask
CE DNN 17.3 15.8 13.5 15.8
+ sequence 15.2 14.2 11.7 14.0
+ 4gram 12.9 11.7 9.9 11.7

V. CONCLUSION

This paper has demonstrated improved performance in hy-
brid DNN systems for ASR from the use of multitask learning
where secondary tasks either use context-independent targets
or alternative state-tying schemes. Improvements are found
across a range of data sizes and with varying numbers of tied
states. The benefits appear to be greater when batches of data
are presented independently for each task. There are generally
relative gains of between 2-6% WER.

Multitask learning is an intriguing technique. In a sense,
it is surprising that simply by training a context-dependent
DNN to additionally predict secondary tasks – that contain
no additional information about the data at all – we find
consistent improvements over the standard training method.
Yet we have also shown that the benefits are not simply due
to a smaller secondary task acting as a lower dimensional prior
to regularise the network when there is sparse training data;
nor are they purely related to the weakness of the cross-entropy
criterion when applied to tied-state targets, since we have
found that benefits persist when sequence training is applied.

Further work is needed to analyse exactly which properties
of the multitask technique are responsible for improvements
in the primary DNN. The most plausible explanation arising
from these experiments is that generating diversity in the rather
arbitrary senone outputs avoids the model over-fitting to a
single set of targets. However, increasing this diversity further
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Fig. 5. Comparing standard and multitask models with sequence training

does not appear to help. Exploring exactly how this diversity
may be optimally exploited will be the subject of future work.
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Fig. 6. Comparing alternative secondary tasks with varying quantity of
training data. We show the single task system (blue), monophone multitask
system (red) and systems with the alternative decision trees of different sizes
(grey).
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