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1 Project aims

In our original proposal, we argued that discrete state Hidden Markov Models are inadequate for
modelling observations produced by underlying continuous processes: for example, the movements of
the articulators during speech production. We proposed to develop a continuous state model, known
as a linear dynamical system model (LDM) or Kalman filter.

Our primary goal therefore was to come to a deeper understanding of these models and their
advantages and disadvantages for use in speech recognition. Qur strategy was to initially investigate
these models using articulatory data [26, 27] because this data exhibits some very desirable properties
(smoothness, continuity) which the LDM should be ideal for modelling, then move on to standard
acoustic-only data, such as TIMIT [9].

1.1 Report structure

We will very briefly outline how linear dynamical system models (LDMs) operate, place our work in
context, go on to report our experimental findings, then finish with a summary of our understanding
of the power of these models and what directions our future work will be taking. Along the way we
will refer to our publications where more details of our work are reported. We will show how our work
fits in to the growing field of novel acoustic modelling that has been developing over that last 5 years
or so by citing key papers from other groups.

2 Background
The following pair of equations define an LDM, where the initial state value xg ~ N(m, A) :

y: = Hx;+e €~ N(v,C) (1)
xy = Fxy_1+my Nt ~ N(w, D) (2)

2.1 How LDMs work

The basic premise of the model is that there is some underlying dynamic process which can be modelled
by equation 2. This equation describes how x¢, the state variable at time ¢, evolves from one time
frame to the next. A linear transformation via the matrix F' and the addition of some Gaussian noise,
), provide this, the dynamic portion of the model.

The complexity of the motion that equation 2 can model is determined by the dimensionality of
the state variable. For example, a 1 dimensional state space would allow exponential growth or decay
with an overall drift (v can be non-zero) and 2 dimensions could describe damped oscillation with a
drift. Increasing the dimensionality beyond 4 or 5 degrees of freedom allows fairly complex trajectories
to be modelled. The observation vectors, given at time ¢ by y¢, represent realisations of this unseen
dynamic process. A linear transformation with the matrix H and the addition of measurement noise,
€;: (equation 1) relate the two. The observed trajectories could be modelled directly, however using a
hidden state space in this way makes a distinction between the production mechanism at work and
the parametrisation chosen to represent it.



uous 1n observation Space. roints near each other in state-space are near eacn other in observation
space.

For modelling speech, the model can be interpreted in several ways. If y is a vector of co-ordinates
of selected points on the articulators, such as in data like [26], then z is the underlying articulator
settings described in a more succinct form (z is typically of lower dimension than y). If on the other
hand, y is acoustic observations (PLPs for example), then z can be interpreted as underlying abstract
(or pseudo) articulator settings.

2.2 Previous work

Our investigations into LDMs grew out of earlier work in which we recovered phonological feature
values from the acoustic signal [12, 13, 11]. We came to two conclusions from that work: 1) speech
exhibits asynchronous properties (in our case, the fact that phonological features do not all change
value synchronously, e.g. at phone boundaries) and 2) a discrete state model is not the best way to
cope with such asynchrony. Our early experiments [14] led us to believe LDMs were worth further
investigation. Richmond’s thesis work on recovering articulation from acoustics [17, 28, 19, 18, 20]
was also encouraging.

Work of others on factorial HMMs [15] has tackled problem 1) using discrete state models which
factor out the underlying asynchronous processes using parallel Markov chains. This approach is
promising but not without problems: the effective state space of the model is the product of the
state spaces of the individual Markov chains, and can therefore very quickly explode — sophisticated
parameter reduction schemes must be use to make the models tractable.

Our initial investigations built on the pioneering work on segment models by Mari Ostendorf and
her group [3, 4, 5, 16]. Other groups have more recently become interested in LDMs, segmental HMMs
and related models, e.g. Gales and Rosti in Cambridge [22, 23].

The work we carried out in this project took place in the context of a growing awareness in the
speech recognition community that HMM performance has stopped improving and that alternative
models must be investigated. The relationships between many of these models under investigation can
be most easily seen by expressing them using the graphical models formalism — for background and
surveys see [22] for example. The appearance of the graphical models toolkit (GMTK) from Bilmes
& Zweig [1] typifies this emerging field.

3 Key advances and experimental results

3.1 Theoretical advances

We have performed the first full investigation using recognition, rather than classification or rescoring
as in previous studies. Full results can be found in our publications (see References, particularly [7, 6]).

Our models are more sophisticated and general then in the previous or concurrent work of others:
for example, Digalakis [3] didn’t use any subspace modelling, and Rosti [22, 23] used zero mean noise
distributions. We have experimented with more model variants that any other study and found that
a model with subspace modelling, dynamic behaviour in the state space and non-zero mean noise
distributions performs best. We therefore conclude that there is modelling power in the dynamic
aspect of the model, and it is worth further development — details of our plans are given in section 5.

To perform the full search required for recognition, we have developed a number of strategies for
reducing computation, most notably the caching of calculations and the use of best-first A* time-
asynchronous search (implemented with a stack decoder).

3.1.1 Subspace modelling

State-space models such as the LDM model apparently complex observation sequences using relatively
simple processes which operate in the state space, along with a projection from the state space up to
the observation space. In contrast, models such as HMMs attempt to model directly in the observation
space, which can result in more complex and less parsimonious models.



To confirm that the LDM is in fact operating in a dynamic fashion, we compared LDMs with factor
analysers (which are like LDMs but with no dynamic process in the hidden space: equation 2 becomes
simply x; ~ N(1,0)). LDMs were significantly more accurate in all experiments.

3.2 Preliminary results using MOCHA data

Our initial investigations used data which exhibits properties thought to be well matched to the
modelling abilities of LDMs, namely parameters which are continuous (no discontinuities, such as
those present in many acoustic representations) and smooth (low bandwidth).

Work was based on electromagnetic articulograph (EMA) data from a single-speaker, a southern
English female (fsew0) from the MOCHA corpus [26]. We experimented with both the normalised
EMA, automatically recovered EMA [18] (referred to as rEMA), standard Mel-scale cepstra (12MFCCs
+ energy, referred to as MELCEP) and a composite set of features similar to that used in [28] derived
from EMA, electropalatograph and laryngograph data using linear discriminant analysis which we
refer to as LDA. The rEMA data is the output of a single-hidden-layer MLP, trained using a scaled
conjugate gradient method, with a skeletonisation algorithm to find the optimum network size, as
reported in [18].

Our investigations started with the simplified task of classification (recognition with known segment
boundaries, so search is much simpler) and results are shown in table 1. Full recognition results using
a phone bigram language model are given in table 2.

Linear dynamical models

EMA 58%
rEMA 56%
LDA 74%
EMA + MELCEP 76%
rEMA + MELCEP 69%
MELCEP 70%

Table 1: Classification results using MOCHA data (46 phone set).

Linear dynamical models

LDA 61%

MELCEP 54%

HMM system from [28] using 5500 tied-state triphone models built with
HTK

LDA \ 63%

Table 2: Phone accuracy recognition results using MOCHA data (46 phone set).

3.3 Major results on TIMIT

We then progressed to the TIMIT corpus [9], performing the standard benchmark task of phone
recognition using a simple bigram (phone) language model. We also used a perceptual linear prediction
parameterisation (PLP), since this appears to be more smooth and continuous than MELCEPs.

With phone boundaries known, results are shown in table 3. Note that with PLPs, adding deltas
makes almost no difference to classification accuracy - from this we infer that the LDM is indeed using
dynamic behaviour in the hidden space, hence appending deltas to the observation vectors provides
no extra information.

To our knowledge, we have obtained first full recognition results for LDMs on TIMIT. Digalakis
[3] used a suboptimal ’split and merge’ algorithm. Table 4 shows the best (and latest) result. This
is of course still some way behind state of the art results for TIMIT using either HMMs or hybrid
neural-net/HMM systems [21], but accuracy is steadily increasing as we further develop our models.



MFCC + deltas 2%
PLP + no deltas 68%
Linear dynamical models - 61 phone set

MFCC + deltas 61%
PLP + no deltas 59%

Table 3: Phone classification results using TIMIT data.

Linear dynamical models
PLP | 55%

Table 4: Phone accuracy recognition results using TIMIT data (39 phone set).

3.4 Analysis of results and models so far

A detailed investigation of the likelihoods accumulated by the LDM in the course of recognising a
segment has revealed that it takes a few frames for the dynamic model the “lock on” to the correct
trajectory — hence the first few frames of each segment are given rather low likelihoods. We think
this is leading to deletion errors, and are investigating solutions. One approach would be to make
the hidden state continuous across segment boundaries — this is on our longer-term agenda since it
introduces a number of theoretical and practical difficulties. Another simpler approach would be to
start the model running a few frames before the (hypothesised) segment start time, but not start
accumulating likelihood until the segment actually begins. We are currently using a simple gamma,
distribution duration model, but with TIMIT there is enough data to estimate a histogram.

Perhaps the most significant limitation of our current system is that training uses the manually-
assigned label times. We know this is suboptimal and are currently carrying out the first trials of
an embedded training system which uses the previous iteration of models to perform a Viterbi re-
alignment of the training data labels. Full EM embedded training may not be be necessary, although
we need to perform experiments to confirm this.

3.5 Latest results: sub-phone modelling

One problem with our previous systems is that there is one setting for the LDM parameters per
segment (phone). Our most recent experiments have divided each phone (deterministically for now,
as in [3]) into a number of sub-phone regions, as shown in table 5.

phone type | regions per phone || phone type regions per phone
affricates 2 fricatives 1
nasals 2 semivowels & glides 2
silence 1 stop closures 1
stops 3 vowels 3

Table 5: Number of sub-phone regions

This improves classification accuracy compared to the results given in table 3 for PLPs with no
deltas to 62% (61 phones) and 70% (39 phones). This work is a precursor to some planned future
research where we intend to both learn how many sub-phone (or other unit) regions to use and to
control switching between regions with a Markov model. The topology of this Markov model may
include branches, and not just linear chains.

3.6 Software

We have created a set of software tools, based on the same library of software as our FESTIVAL [2]
speech synthesis toolkit. Along with our stack decoder, this gives us a very flexible framework for
exploring future extensions of the models, particularly those outlined below. The tools allow rapid
prototyping of new model types along with very straightforward use of those models in the decoder,
since the stack decoder completely decouples the acoustic models from the language model and lexicon.
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4 Collaboration

During the course of the project, we have been discussing ideas with various other groups, most notably
Alan Wrench of Queen Margaret University College and members of the Institute for Adaptive and
Neural Computation here at Edinburgh University. From these discussions we have come to a deeper
understanding of the properties of LDMs and now feel that they have a great deal of potential for
speech recognition. Our plans for future research are given in the following section.

4.1 Student projects

Joe Frankel (Ph.D) Joe’s thesis work (submission expected Autumn 2002) has been investigating
linear dynamic models for ASR and thus addresses the core issues in this project. Joe was co-author
with the principal investigator (King) on the key publications [8, 7, 6].

Korin Richmond (Ph.D) Korin’s thesis work (submitted late 2001 and being examined 29th April
2002) used neural networks and mixture density networks (whose output is a mixture-of-Gaussians
PDF over articulator positions) to perform acoustic—articulatory mapping (the so-called inversion
problem), and the recovered articulation mentioned earlier in this report was produced by his system.
Korin has subsequently been funded by this grant, and his work included the pilot study preparing
for using LDMs in speech synthesis (see below).

Fiona Couper (M.Sc) Starting 1st May 2002, Fiona will be carrying out her M.Sc. dissertation
project using our new models. Her work will serve as the pilot study for two future projects. The
first is Fiona’s EPSRC-grant-funded Ph.D. which will investigate the learning of a (non-phonetic)
unit inventory from data. The second future project is the subject of a grant proposal shortly to
be submitted to EPSRC, where we propose to extend the sub-phone modelling work described above
and explore methods for learning the topology and parameters of a finite state switching process
for controlling the LDM parameters. This will ultimately link in with Fiona’s Ph.D. work to make a
general framework for learning both the switching process and the unit inventory from data.

5 Summary and future direction

This project was funded under the Realising Our Potential Awards (ROPA) scheme and carried
out some novel work exploring the potential of a new type of acoustic model for ASR. We have
demonstrated that linear dynamic models show promise for ASR and have identified a number of
future directions for this research to take which we are already actively pursuing. The main thrust
of our future work will be in adding a (Markov) switching process which sets the parameters of the
LDMs. By having more than one state in series, this gives us sub-phone (or whatever unit we choose)
modelling. By having more than one state in parallel this gives us the sort of modelling power that
would be provided by Gaussian mixture distributions in equations 1 and 2. The models will then
become switching linear dynamical systems [24, 25, 10]. We are also investigating ways of making the
hidden state continuous across model boundaries without making the models intractable. Visit the
CSTR website to get the latest developments: www.cstr.ed.ac.uk. Items in the bibliography marked
O are associated with this project.

Use in speech synthesis One unexpected use we have found for our models is in concatenative
speech synthesis. Two of the main problems facing state-of-the art unit-selection synthesisers are those
of join cost and join smoothing. We have submitted an EPSRC proposal® to use LDMs to simultane-
ously compute join cost (a measure of perceptual discontinuity) and to smooth joins (currently done
by spectral interpolation) by learning an underlying “articulatory-like” representation of the speech
signal.

'Reviewers comments were recently received and are very favourable - this proposal is going to the panel on May 7th.
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